Best GPUs for cryptocurrency mining Hashrates

How To End The Cryptocurrency Exchange "Wild West" Without Crippling Innovation


In case you haven't noticed the consultation paper, staff notice, and report on Quadriga, regulators are now clamping down on Canadian cryptocurrency exchanges. The OSC and other regulatory bodies are still interested in industry feedback. They have not put forward any official regulation yet. Below are some ideas/insights and a proposed framework.



Many of you have limited time to read the full proposal, so here are the highlights:

Offline Multi-Signature

Effective standards to prevent both internal and external theft. Exchange operators are trained and certified, and have a legal responsibility to users.

Regular Transparent Audits

Provides visibility to Canadians that their funds are fully backed on the exchange, while protecting privacy and sensitive platform information.

Insurance Requirements

Establishment of basic insurance standards/strategy, to expand over time. Removing risk to exchange users of any hot wallet theft.


Background and Justifications


Cold Storage Custody/Management
After reviewing close to 100 cases, all thefts tend to break down into more or less the same set of problems:
• Funds stored online or in a smart contract,
• Access controlled by one person or one system,
• 51% attacks (rare),
• Funds sent to the wrong address (also rare), or
• Some combination of the above.
For the first two cases, practical solutions exist and are widely implemented on exchanges already. Offline multi-signature solutions are already industry standard. No cases studied found an external theft or exit scam involving an offline multi-signature wallet implementation. Security can be further improved through minimum numbers of signatories, background checks, providing autonomy and legal protections to each signatory, establishing best practices, and a training/certification program.
The last two transaction risks occur more rarely, and have never resulted in a loss affecting the actual users of the exchange. In all cases to date where operators made the mistake, they've been fully covered by the exchange platforms.
• 51% attacks generally only occur on blockchains with less security. The most prominent cases have been Bitcoin Gold and Ethereum Classic. The simple solution is to enforce deposit limits and block delays such that a 51% attack is not cost-effective.
• The risk of transactions to incorrect addresses can be eliminated by a simple test transaction policy on large transactions. By sending a small amount of funds prior to any large withdrawals/transfers as a standard practice, the accuracy of the wallet address can be validated.
The proposal covers all loss cases and goes beyond, while avoiding significant additional costs, risks, and limitations which may be associated with other frameworks like SOC II.

On The Subject of Third Party Custodians
Many Canadian platforms are currently experimenting with third party custody. From the standpoint of the exchange operator, they can liberate themselves from some responsibility of custody, passing that off to someone else. For regulators, it puts crypto in similar categorization to oil, gold, and other commodities, with some common standards. Platform users would likely feel greater confidence if the custodian was a brand they recognized. If the custodian was knowledgeable and had a decent team that employed multi-sig, they could keep assets safe from internal theft. With the right protections in place, this could be a great solution for many exchanges, particularly those that lack the relevant experience or human resources for their own custody systems.
However, this system is vulnerable to anyone able to impersonate the exchange operators. You may have a situation where different employees who don't know each other that well are interacting between different companies (both the custodian and all their customers which presumably isn't just one exchange). A case study of what can go wrong in this type of environment might be Bitpay, where the CEO was tricked out of 5000 bitcoins over 3 separate payments by a series of emails sent legitimately from a breached computer of another company CEO. It's also still vulnerable to the platform being compromised, as in the really large $70M Bitfinex hack, where the third party Bitgo held one key in a multi-sig wallet. The hacker simply authorized the withdrawal using the same credentials as Bitfinex (requesting Bitgo to sign multiple withdrawal transactions). This succeeded even with the use of multi-sig and two heavily security-focused companies, due to the lack of human oversight (basically, hot wallet). Of course, you can learn from these cases and improve the security, but so can hackers improve their deception and at the end of the day, both of these would have been stopped by the much simpler solution of a qualified team who knew each other and employed multi-sig with properly protected keys. It's pretty hard to beat a human being who knows the business and the typical customer behaviour (or even knows their customers personally) at spotting fraud, and the proposed multi-sig means any hacker has to get through the scrutiny of 3 (or more) separate people, all of whom would have proper training including historical case studies.
There are strong arguments both for and against using use of third party custodians. The proposal sets mandatory minimum custody standards would apply regardless if the cold wallet signatories are exchange operators, independent custodians, or a mix of both.

On The Subject Of Insurance
ShakePay has taken the first steps into this new realm (congratulations). There is no question that crypto users could be better protected by the right insurance policies, and it certainly feels better to transact with insured platforms. The steps required to obtain insurance generally place attention in valuable security areas, and in this case included a review from CipherTrace. One of the key solutions in traditional finance comes from insurance from entities such as the CDIC.
However, historically, there wasn't found any actual insurance payout to any cryptocurrency exchange, and there are notable cases where insurance has not paid. With Bitpay, for example, the insurance agent refused because the issue happened to the third party CEO's computer instead of anything to do with Bitpay itself. With the Youbit exchange in South Korea, their insurance claim was denied, and the exchange ultimately ended up instead going bankrupt with all user's funds lost. To quote Matt Johnson in the original Lloyd's article: “You can create an insurance policy that protects no one – you know there are so many caveats to the policy that it’s not super protective.”
ShakePay's insurance was only reported to cover their cold storage, and “physical theft of the media where the private keys are held”. Physical theft has never, in the history of cryptocurrency exchange cases reviewed, been reported as the cause of loss. From the limited information of the article, ShakePay made it clear their funds are in the hands of a single US custodian, and at least part of their security strategy is to "decline[] to confirm the custodian’s name on the record". While this prevents scrutiny of the custodian, it's pretty silly to speculate that a reasonably competent hacking group couldn't determine who the custodian is. A far more common infiltration strategy historically would be social engineering, which has succeeded repeatedly. A hacker could trick their way into ShakePay's systems and request a fraudulent withdrawal, impersonate ShakePay and request the custodian to move funds, or socially engineer their way into the custodian to initiate the withdrawal of multiple accounts (a payout much larger than ShakePay) exploiting the standard procedures (for example, fraudulently initiating or override the wallet addresses of a real transfer). In each case, nothing was physically stolen and the loss is therefore not covered by insurance.
In order for any insurance to be effective, clear policies have to be established about what needs to be covered. Anything short of that gives Canadians false confidence that they are protected when they aren't in any meaningful way. At this time, the third party insurance market does not appear to provide adequate options or coverage, and effort is necessary to standardize custody standards, which is a likely first step in ultimately setting up an insurance framework.
A better solution compared to third party insurance providers might be for Canadian exchange operators to create their own collective insurance fund, or a specific federal organization similar to the CDIC. Such an organization would have a greater interest or obligation in paying out actual cases, and that would be it's purpose rather than maximizing it's own profit. This would be similar to the SAFU which Binance has launched, except it would cover multiple exchanges. There is little question whether the SAFU would pay out given a breach of Binance, and a similar argument could be made for a insurance fund managed by a collective of exchange operators or a government organization. While a third party insurance provider has the strong market incentive to provide the absolute minimum coverage and no market incentive to payout, an entity managed by exchange operators would have incentive to protect the reputation of exchange operators/the industry, and the government should have the interest of protecting Canadians.

On The Subject of Fractional Reserve
There is a long history of fractional reserve failures, from the first banks in ancient times, through the great depression (where hundreds of fractional reserve banks failed), right through to the 2008 banking collapse referenced in the first bitcoin block. The fractional reserve system allows banks to multiply the money supply far beyond the actual cash (or other assets) in existence, backed only by a system of debt obligations of others. Safely supporting a fractional reserve system is a topic of far greater complexity than can be addressed by a simple policy, and when it comes to cryptocurrency, there is presently no entity reasonably able to bail anyone out in the event of failure. Therefore, this framework is addressed around entities that aim to maintain 100% backing of funds.
There may be some firms that desire but have failed to maintain 100% backing. In this case, there are multiple solutions, including outside investment, merging with other exchanges, or enforcing a gradual restoration plan. All of these solutions are typically far better than shutting down the exchange, and there are multiple cases where they've been used successfully in the past.

Proof of Reserves/Transparency/Accountability
Canadians need to have visibility into the backing on an ongoing basis.
The best solution for crypto-assets is a Proof of Reserve. Such ideas go back all the way to 2013, before even Mt. Gox. However, no Canadian exchange has yet implemented such a system, and only a few international exchanges (CoinFloor in the UK being an example) have. Many firms like Kraken, BitBuy, and now ShakePay use the Proof of Reserve term to refer to lesser proofs which do not actually cryptographically prove the full backing of all user assets on the blockchain. In order for a Proof of Reserve to be effective, it must actually be a complete proof, and it needs to be understood by the public that is expected to use it. Many firms have expressed reservations about the level of transparency required in a complete Proof of Reserve (for example Kraken here). While a complete Proof of Reserves should be encouraged, and there are some solutions in the works (ie TxQuick), this is unlikely to be suitable universally for all exchange operators and users.
Given the limitations, and that firms also manage fiat assets, a more traditional audit process makes more sense. Some Canadian exchanges (CoinSquare, CoinBerry) have already subjected themselves to annual audits. However, these results are not presently shared publicly, and there is no guarantee over the process including all user assets or the integrity and independence of the auditor. The auditor has been typically not known, and in some cases, the identity of the auditor is protected by a NDA. Only in one case (BitBuy) was an actual report generated and publicly shared. There has been no attempt made to validate that user accounts provided during these audits have been complete or accurate. A fraudulent fractional exchange, or one which had suffered a breach they were unwilling to publicly accept (see CoinBene), could easily maintain a second set of books for auditors or simply exclude key accounts to pass an individual audit.
The proposed solution would see a reporting standard which includes at a minimum - percentage of backing for each asset relative to account balances and the nature of how those assets are stored, with ownership proven by the auditor. The auditor would also publicly provide a "hash list", which they independently generate from the accounts provided by the exchange. Every exchange user can then check their information against this public "hash list". A hash is a one-way form of encryption, which fully protects the private information, yet allows anyone who knows that information already to validate that it was included. Less experienced users can take advantage of public tools to calculate the hash from their information (provided by the exchange), and thus have certainty that the auditor received their full balance information. Easy instructions can be provided.
Auditors should be impartial, their identities and process public, and they should be rotated so that the same auditor is never used twice in a row. Balancing the cost of auditing against the needs for regular updates, a 6 month cycle likely makes the most sense.

Hot Wallet Management
The best solution for hot wallets is not to use them. CoinBerry reportedly uses multi-sig on all withdrawals, and Bitmex is an international example known for their structure devoid of hot wallets.
However, many platforms and customers desire fast withdrawal processes, and human validation has a cost of time and delay in this process.
A model of self-insurance or separate funds for hot wallets may be used in these cases. Under this model, a platform still has 100% of their client balance in cold storage and holds additional funds in hot wallets for quick withdrawal. Thus, the risk of those hot wallets is 100% on exchange operators and not affecting the exchange users. Since most platforms typically only have 1%-5% in hot wallets at any given time, it shouldn't be unreasonable to build/maintain these additional reserves over time using exchange fees or additional investment. Larger withdrawals would still be handled at regular intervals from the cold storage.
Hot wallet risks have historically posed a large risk and there is no established standard to guarantee secure hot wallets. When the government of South Korea dispatched security inspections to multiple exchanges, the results were still that 3 of them got hacked after the inspections. If standards develop such that an organization in the market is willing to insure the hot wallets, this could provide an acceptable alternative. Another option may be for multiple exchange operators to pool funds aside for a hot wallet insurance fund. Comprehensive coverage standards must be established and maintained for all hot wallet balances to make sure Canadians are adequately protected.

Current Draft Proposal

(1) Proper multi-signature cold wallet storage.
(a) Each private key is the personal and legal responsibility of one person - the “signatory”. Signatories have special rights and responsibilities to protect user assets. Signatories are trained and certified through a course covering (1) past hacking and fraud cases, (2) proper and secure key generation, and (3) proper safekeeping of private keys. All private keys must be generated and stored 100% offline by the signatory. If even one private keys is ever breached or suspected to be breached, the wallet must be regenerated and all funds relocated to a new wallet.
(b) All signatories must be separate background-checked individuals free of past criminal conviction. Canadians should have a right to know who holds their funds. All signing of transactions must take place with all signatories on Canadian soil or on the soil of a country with a solid legal system which agrees to uphold and support these rules (from an established white-list of countries which expands over time).
(c) 3-5 independent signatures are required for any withdrawal. There must be 1-3 spare signatories, and a maximum of 7 total signatories. The following are all valid combinations: 3of4, 3of5, 3of6, 4of5, 4of6, 4of7, 5of6, or 5of7.
(d) A security audit should be conducted to validate the cold wallet is set up correctly and provide any additional pertinent information. The primary purpose is to ensure that all signatories are acting independently and using best practices for private key storage. A report summarizing all steps taken and who did the audit will be made public. Canadians must be able to validate the right measures are in place to protect their funds.
(e) There is a simple approval process if signatories wish to visit any country outside Canada, with a potential whitelist of exempt countries. At most 2 signatories can be outside of aligned jurisdiction at any given time. All exchanges would be required to keep a compliant cold wallet for Canadian funds and have a Canadian office if they wish to serve Canadian customers.
(2) Regular and transparent solvency audits.
(a) An audit must be conducted at founding, after 3 months of operation, and at least once every 6 months to compare customer balances against all stored cryptocurrency and fiat balances. The auditor must be known, independent, and never the same twice in a row.
(b) An audit report will be published featuring the steps conducted in a readable format. This should be made available to all Canadians on the exchange website and on a government website. The report must include what percentage of each customer asset is backed on the exchange, and how those funds are stored.
(c) The auditor will independently produce a hash of each customer's identifying information and balance as they perform the audit. This will be made publicly available on the exchange and government website, along with simplified instructions that each customer can use to verify that their balance was included in the audit process.
(d) The audit needs to include a proof of ownership for any cryptocurrency wallets included. A satoshi test (spending a small amount) or partially signed transaction both qualify.
(e) Any platform without 100% reserves should be assessed on a regular basis by a government or industry watchdog. This entity should work to prevent any further drop, support any private investor to come in, or facilitate a merger so that 100% backing can be obtained as soon as possible.
(3) Protections for hot wallets and transactions.
(a) A standardized list of approved coins and procedures will be established to constitute valid cold storage wallets. Where a multi-sig process is not natively available, efforts will be undertaken to establish a suitable and stable smart contract standard. This list will be expanded and improved over time. Coins and procedures not on the list are considered hot wallets.
(b) Hot wallets can be backed by additional funds in cold storage or an acceptable third-party insurance provider with a comprehensive coverage policy.
(c) Exchanges are required to cover the full balance of all user funds as denominated in the same currency, or double the balance as denominated in bitcoin or CAD using an established trading rate. If the balance is ever insufficient due to market movements, the firm must rectify this within 24 hours by moving assets to cold storage or increasing insurance coverage.
(d) Any large transactions (above a set threshold) from cold storage to any new wallet addresses (not previously transacted with) must be tested with a smaller transaction first. Deposits of cryptocurrency must be limited to prevent economic 51% attacks. Any issues are to be covered by the exchange.
(e) Exchange platforms must provide suitable authentication for users, including making available approved forms of two-factor authentication. SMS-based authentication is not to be supported. Withdrawals must be blocked for 48 hours in the event of any account password change. Disputes on the negligence of exchanges should be governed by case law.

Steps Forward

Continued review of existing OSC feedback is still underway. More feedback and opinions on the framework and ideas as presented here are extremely valuable. The above is a draft and not finalized.
The process of further developing and bringing a suitable framework to protect Canadians will require the support of exchange operators, legal experts, and many others in the community. The costs of not doing such are tremendous. A large and convoluted framework, one based on flawed ideas or implementation, or one which fails to properly safeguard Canadians is not just extremely expensive and risky for all Canadians, severely limiting to the credibility and reputation of the industry, but an existential risk to many exchanges.
The responsibility falls to all of us to provide our insight and make our opinions heard on this critical matter. Please take the time to give your thoughts.
submitted by azoundria2 to QuadrigaInitiative [link] [comments]

Filecoin | Development Status and Mining Progress

Author: Gamals Ahmed, CoinEx Business Ambassador
https://preview.redd.it/5bqakdqgl3g51.jpg?width=865&format=pjpg&auto=webp&s=b709794863977eb6554e3919b9e00ca750e3e704
A decentralized storage network that transforms cloud storage into an account market. Miners obtain the integrity of the original protocol by providing data storage and / or retrieval. On the contrary, customers pay miners to store or distribute data and retrieve it.
Filecoin announced, that there will be more delays before its main network is officially launched.
Filecoin developers postponed the release date of their main network to late July to late August 2020.
As mentioned in a recent announcement, the Filecoin team said that the initiative completed the first round of the internal protocol security audit. Platform developers claim that the results of the review showed that they need to make several changes to the protocol’s code base before performing the second stage of the software testing process.
Created by Protocol Labs, Filecoin was developed using File System (IPFS), which is a peer-to-peer data storage network. Filecoin will allow users to trade storage space in an open and decentralized market.
Filecoin developers implemented one of the largest cryptocurrency sales in 2017. They have privately obtained over $ 200 million from professional or accredited investors, including many institutional investors.
The main network was slated to launch last month, but in February 2020, the Philly Queen development team delayed the release of the main network between July 15 and July 17, 2020.
They claimed that the outbreak of the Coronavirus (COVID-19) in China was the main cause of the delay. The developers now say that they need more time to solve the problems found during a recent codecase audit.
The Filecoin team noted the following:
“We have drafted a number of protocol changes to ensure that building our major network launch is safe and economically sound.” The project developers will add them to two different implementations of Filecoin (Lotus and go-filecoin) in the coming weeks.
Filecoin developers conducted a survey to allow platform community members to cast their votes on three different launch dates for Testnet Phase 2 and mainnet.
The team reported that the community gave their votes. Based on the vote results, the Filecoin team announced a “conservative” estimate that the second phase of the network test should begin by May 11, 2020. The main Filecoin network may be launched sometime between July 20 and August 21, 2020.
The updates to the project can be found on the Filecoin Road Map.
Filecoin developers stated:
“This option will make us get the most important protocol changes first, and then implement the rest as protocol updates during testnet.” Filecoin is back down from the final test stage.
Another filecoin decentralized storage network provider launched its catalytic test network, the final stage of the storage network test that supports the blockchain.
In a blog post on her website, Filecoin said she will postpone the last test round until August. The company also announced a calibration period from July 20 to August 3 to allow miners to test their mining settings and get an idea of how competition conditions affected their rewards.
Filecoin had announced earlier last month that the catalytic testnet test would precede its flagship launch. The delay in the final test also means that the company has returned the main launch window between August 31 and September 21.
Despite the lack of clear incentives for miners and multiple delays, Filecoin has succeeded in attracting huge interest, especially in China. Investors remained highly speculating on the network’s mining hardware and its premium price.
Mining in Filecoin
In most blockchain protocols, “miners” are network participants who do the work necessary to promote and maintain the blockchain. To provide these services, miners are compensated in the original cryptocurrency.
Mining in Filecoin works completely differently — instead of contributing to computational power, miners contribute storage capacity to use for dealing with customers looking to store data.
Filecoin will contain several types of miners:
Storage miners responsible for storing files and data on the network. Miners retrieval, responsible for providing quick tubes for file recovery. Miners repair to be carried out.
Storage miners are the heart of the network. They earn Filecoin by storing data for clients, and computerizing cipher directories to check storage over time. The probability of earning the reward reward and transaction fees is proportional to the amount of storage that the Miner contributes to the Filecoin network, not the hash power.
Retriever miners are the veins of the network. They earn Filecoin by winning bids and mining fees for a specific file, which is determined by the market value of the said file size. Miners bandwidth and recovery / initial transaction response time will determine its ability to close recovery deals on the network.
The maximum bandwidth of the recovery miners will determine the total amount of deals that it can enter into.
In the current implementation, the focus is mostly on storage miners, who sell storage capacity for FIL.

Hardware recommendations

The current system specifications recommended for running the miner are:
Compared to the hardware requirements for running a validity checker, these standards are much higher — although they definitely deserve it. Since these will not increase in the presumed future, the money spent on Filecoin mining hardware will provide users with many years of reliable service, and they pay themselves many times. Think of investing as a small business for cloud storage. To launch a model on the current data hosting model, it will cost millions of dollars in infrastructure and logistics to get started. With Filecoin, you can do the same for a few thousand dollars.
Proceed to mining
Deals are the primary function of the Filecoin network, and it represents an agreement between a client and miners for a “storage” contract.
Once the customer decides to have a miner to store based on the available capacity, duration and price required, he secures sufficient funds in a linked portfolio to cover the total cost of the deal. The deal is then published once the mine accepts the storage agreement. By default, all Filecoin miners are set to automatically accept any deal that meets their criteria, although this can be disabled for miners who prefer to organize their deals manually.
After the deal is published, the customer prepares the data for storage and then transfers it to the miner. Upon receiving all the data, the miner fills in the data in a sector, closes it, and begins to provide proofs to the chain. Once the first confirmation is obtained, the customer can make sure the data is stored correctly, and the deal has officially started.
Throughout the deal, the miner provides continuous proofs to the chain. Clients gradually pay with money they previously closed. If there is missing or late evidence, the miner is punished. More information about this can be found in the Runtime, Cut and Penalties section of this page.
At Filecoin, miners earn two different types of rewards for their efforts: storage fees and reward prevention.
Storage fees are the fees that customers pay regularly after reaching a deal, in exchange for storing data. This fee is automatically deposited into the withdrawal portfolio associated with miners while they continue to perform their duties over time, and is locked for a short period upon receipt.
Block rewards are large sums given to miners calculated on a new block. Unlike storage fees, these rewards do not come from a linked customer; Instead, the new FIL “prints” the network as an inflationary and incentive measure for miners to develop the chain. All active miners on the network have a chance to get a block bonus, their chance to be directly proportional to the amount of storage space that is currently being contributed to the network.
Duration of operation, cutting and penalties
“Slashing” is a feature found in most blockchain protocols, and is used to punish miners who fail to provide reliable uptime or act maliciously against the network.
In Filecoin, miners are susceptible to two different types of cut: storage error cut, unanimously reduce error.
Storage Error Reduction is a term used to include a wider range of penalties, including error fees, sector penalties, and termination fees. Miners must pay these penalties if they fail to provide reliability of the sector or decide to leave the network voluntarily.
An error fee is a penalty that a miner incurs for each non-working day. Sector punishment: A penalty incurred by a miner of a disrupted sector for which no error was reported before the WindowPoSt inspection.
The sector will pay an error fee after the penalty of the sector once the error is discovered.
Termination Fee: A penalty that a miner incurs when a sector is voluntary or involuntarily terminated and removed from the network.
Cutting consensus error is the penalty that a miner incurs for committing consensus errors. This punishment applies to miners who have acted maliciously against the network consensus function.
Filecoin miners
Eight of the top 10 Felticoin miners are Chinese investors or companies, according to the blockchain explorer, while more companies are selling cloud mining contracts and distributed file sharing system hardware. CoinDesk’s Wolfe Chao wrote: “China’s craze for Filecoin may have been largely related to the long-standing popularity of crypto mining in the country overall, which is home to about 65% of the computing power on Bitcoin at discretion.”
With Filecoin approaching the launch of the mainnet blocknet — after several delays since the $ 200 million increase in 2017 — Chinese investors are once again speculating strongly about network mining devices and their premium prices.
Since Protocol Labs, the company behind Filecoin, released its “Test Incentives” program on June 9 that was scheduled to start in a week’s time, more than a dozen Chinese companies have started selling cloud mining contracts and hardware — despite important details such as economics Mining incentives on the main network are still endless.
Sales volumes to date for each of these companies can range from half a million to tens of millions of dollars, according to self-reported data on these platforms that CoinDesk has watched and interviews with several mining hardware manufacturers.
Filecoin’s goal is to build a distributed storage network with token rewards to spur storage hosting as a way to drive wider adoption. Protocol Labs launched a test network in December 2019. But the tokens mined in the testing environment so far are not representative of the true silicon coin that can be traded when the main network is turned on. Moreover, the mining incentive economics on testnet do not represent how final block rewards will be available on the main network.
However, data from Blockecoin’s blocknetin testnet explorers show that eight out of 10 miners with the most effective mining force on testnet are currently Chinese miners.
These eight miners have about 15 petabytes (PB) of effective storage mining power, accounting for more than 85% of the total test of 17.9 petable. For the context, 1 petabyte of hard disk storage = 1000 terabytes (terabytes) = 1 million gigabytes (GB).
Filecoin craze in China may be closely related to the long-standing popularity of crypt mining in the country overall, which is home to about 65% of the computing power on Bitcoin by estimation. In addition, there has been a lot of hype in China about foreign exchange mining since 2018, as companies promote all types of devices when the network is still in development.
“Encryption mining has always been popular in China,” said Andy Tien, co-founder of 1475, one of several mining hardware manufacturers in Philquin supported by prominent Chinese video indicators such as Fenbushi and Hashkey Capital.
“Even though the Velikoyen mining process is more technologically sophisticated, the idea of mining using hard drives instead of specialized machines like Bitcoin ASIC may be a lot easier for retailers to understand,” he said.
Meanwhile, according to Feixiaohao, a Chinese service comparable to CoinMarketCap, nearly 50 Chinese crypto exchanges are often somewhat unknown with some of the more well-known exchanges including Gate.io and Biki — have listed trading pairs for Filecoin currency contracts for USDT.
In bitcoin mining, at the current difficulty level, one segment per second (TH / s) fragmentation rate is expected to generate around 0.000008 BTC within 24 hours. The higher the number of TH / s, the greater the number of bitcoins it should be able to produce proportionately. But in Filecoin, the efficient mining force of miners depends on the amount of data stamped on the hard drive, not the total size of the hard drive.
To close data in the hard drive, the Filecoin miner still needs processing power, i.e. CPU or GPU as well as RAM. More powerful processors with improved software can confine data to the hard drive more quickly, so miners can combine more efficient mining energy faster on a given day.
As of this stage, there appears to be no transparent way at the network level for retail investors to see how much of the purchased hard disk drive was purchased which actually represents an effective mining force.
The U.S.-based Labs Protocol was behind Filecoin’s initial coin offer for 2017, which raised an astonishing $ 200 million.
This was in addition to a $ 50 million increase in private investment supported by notable venture capital projects including Sequoia, Anderson Horowitz and Union Square Ventures. CoinDk’s parent company, CoinDk, has also invested in Protocol Labs.
After rounds of delay, Protocol Protocols said in September 2019 that a testnet launch would be available around December 2019 and the main network would be rolled out in the first quarter of 2020.
The test started as promised, but the main network has been delayed again and is now expected to launch in August 2020. What is Filecoin mining process?
Filecoin mainly consists of three parts: the storage market (the chain), the blockecin Filecoin, and the search market (under the chain). Storage and research market in series and series respectively for security and efficiency. For users, the storage frequency is relatively low, and the security requirements are relatively high, so the storage process is placed on the chain. The retrieval frequency is much higher than the storage frequency when there is a certain amount of data. Given the performance problem in processing data on the chain, the retrieval process under the chain is performed. In order to solve the security issue of payment in the retrieval process, Filecoin adopts the micro-payment strategy. In simple terms, the process is to split the document into several copies, and every time the user gets a portion of the data, the corresponding fee is paid. Types of mines corresponding to Filecoin’s two major markets are miners and warehousers, among whom miners are primarily responsible for storing data and block packages, while miners are primarily responsible for data query. After the stable operation of the major Filecoin network in the future, the mining operator will be introduced, who is the main responsible for data maintenance.
In the initial release of Filecoin, the request matching mechanism was not implemented in the storage market and retrieval market, but the takeover mechanism was adopted. The three main parts of Filecoin correspond to three processes, namely the stored procedure, retrieval process, packaging and reward process. The following figure shows the simplified process and the income of the miners:
The Filecoin mining process is much more complicated, and the important factor in determining the previous mining profit is efficient storage. Effective storage is a key feature that distinguishes Filecoin from other decentralized storage projects. In Filecoin’s EC consensus, effective storage is similar to interest in PoS, which determines the likelihood that a miner will get the right to fill, that is, the proportion of miners effectively stored in the entire network is proportional to final mining revenue.
It is also possible to obtain higher effective storage under the same hardware conditions by improving the mining algorithm. However, the current increase in the number of benefits that can be achieved by improving the algorithm is still unknown.
It seeks to promote mining using Filecoin Discover
Filecoin announced Filecoin Discover — a step to encourage miners to join the Filecoin network. According to the company, Filecoin Discover is “an ever-growing catalog of numerous petabytes of public data covering literature, science, art, and history.” Miners interested in sharing can choose which data sets they want to store, and receive that data on a drive at a cost. In exchange for storing this verified data, miners will earn additional Filecoin above the regular block rewards for storing data. Includes the current catalog of open source data sets; ENCODE, 1000 Genomes, Project Gutenberg, Berkley Self-driving data, more projects, and datasets are added every day.
Ian Darrow, Head of Operations at Filecoin, commented on the announcement:
“Over 2.5 quintillion bytes of data are created every day. This data includes 294 billion emails, 500 million tweets and 64 billion messages on social media. But it is also climatology reports, disease tracking maps, connected vehicle coordinates and much more. It is extremely important that we maintain data that will serve as the backbone for future research and discovery”.
Miners who choose to participate in Filecoin Discover may receive hard drives pre-loaded with verified data, as well as setup and maintenance instructions, depending on the company. The Filecoin team will also host the Slack (fil-Discover-support) channel where miners can learn more.
Filecoin got its fair share of obstacles along the way. Last month Filecoin announced a further delay before its main network was officially launched — after years of raising funds.
In late July QEBR (OTC: QEBR) announced that it had ceded ownership of two subsidiaries in order to focus all of the company’s resources on building blockchain-based mining operations.
The QEBR technology team previously announced that it has proven its system as a Filecoin node valid with CPU, GPU, bandwidth and storage compatibility that meets all IPFS guidelines. The QEBR test system is connected to the main Filecoin blockchain and the already mined filecoin coin has already been tested.
“The disclosure of Sheen Boom and Jihye will allow our team to focus only on the upcoming global launch of Filecoin. QEBR branch, Shenzhen DZD Digital Technology Ltd. (“ DZD “), has a strong background in blockchain development, extraction Data, data acquisition, data processing, data technology research. We strongly believe Filecoin has the potential to be a leading blockchain-based cryptocurrency and will make every effort to make QEBR an important player when Mainecoin mainnet will be launched soon”.
IPFS and Filecoin
Filecoin and IPFS are complementary protocols for storing and sharing data in a decentralized network. While users are not required to use Filecoin and IPFS together, the two combined are working to resolve major failures in the current web infrastructure.
IPFS
It is an open source protocol that allows users to store and transmit verifiable data with each other. IPFS users insist on data on the network by installing it on their own device, to a third-party cloud service (known as Pinning Services), or through community-oriented systems where a group of individual IPFS users share resources to ensure the content stays live.
The lack of an integrated catalytic mechanism is the challenge Filecoin hopes to solve by allowing users to catalyze long-term distributed storage at competitive prices through the storage contract market, while maintaining the efficiency and flexibility that the IPFS network provides.
Using IPFS
In IPFS, the data is hosted by the required data installation nodes. For data to persist while the user node is offline, users must either rely on their other peers to install their data voluntarily or use a central install service to store data.
Peer-to-peer reliance caching data may be a good thing as one or multiple organizations share common files on an internal network, or where strong social contracts can be used to ensure continued hosting and preservation of content in the long run. Most users in an IPFS network use an installation service.
Using Filecoin
The last option is to install your data in a decentralized storage market, such as Filecoin. In Filecoin’s structure, customers make regular small payments to store data when a certain availability, while miners earn those payments by constantly checking the integrity of this data, storing it, and ensuring its quick recovery. This allows users to motivate Filecoin miners to ensure that their content will be live when it is needed, a distinct advantage of relying only on other network users as required using IPFS alone.
Filecoin, powered by IPFS
It is important to know that Filecoin is built on top of IPFS. Filecoin aims to be a very integrated and seamless storage market that takes advantage of the basic functions provided by IPFS, they are connected to each other, but can be implemented completely independently of each other. Users do not need to interact with Filecoin in order to use IPFS.
Some advantages of sharing Filecoin with IPFS:
Of all the decentralized storage projects, Filecoin is undoubtedly the most interested, and IPFS has been running stably for two years, fully demonstrating the strength of its core protocol.
Filecoin’s ability to obtain market share from traditional central storage depends on end-user experience and storage price. Currently, most Filecoin nodes are posted in the IDC room. Actual deployment and operation costs are not reduced compared to traditional central cloud storage, and the storage process is more complicated.
PoRep and PoSt, which has a large number of proofs of unknown operation, are required to cause the actual storage cost to be so, in the early days of the release of Filecoin. The actual cost of storing data may be higher than the cost of central cloud storage, but the initial storage node may reduce the storage price in order to obtain block rewards, which may result in the actual storage price lower than traditional central cloud storage.
In the long term, Filecoin still needs to take full advantage of its P2P storage, convert storage devices from specialization to civil use, and improve its algorithms to reduce storage costs without affecting user experience. The storage problem is an important problem to be solved in the blockchain field, so a large number of storage projects were presented at the 19th Web3 Summit. IPFS is an important part of Web3 visibility. Its development will affect the development of Web3 to some extent. Likewise, Web3 development somewhat determines the future of IPFS. Filecoin is an IPFS-based storage class project initiated by IPFS. There is no doubt that he is highly expected.
Resources :
  1. https://www.coindesk.com/filecoin-pushes-back-final-testing-phase-announces-calibration-period-for-miners
  2. https://docs.filecoin.io/mine/#types-of-miners https://www.nasdaq.com/articles/inside-the-craze-for-filecoin-crypto-mining-in-china-2020-07-12؟amp
  3. https://www.prnewswire.com/news-releases/qebr-streamlines-holdings-to-concentrate-on-filecoin-development-and-mining-301098731.html
  4. https://www.crowdfundinsider.com/2020/05/161200-filecoin-seeks-to-boost-mining-with-filecoin-discove
  5. https://zephyrnet.com/filecoin-seeks-to-boost-mining-with-filecoin-discove
  6. https://docs.filecoin.io/introduction/ipfs-and-filecoin/#filecoin-powered-by-ipfs
submitted by CoinEx_Institution to filecoin [link] [comments]

⟳ 870 apps added, 78 updated at f-droid.org

Notice: this update is spurious, and the issue is being looked at.
⟳ f-droid.org from Wed, 26 Feb 2020 20:21:50 GMT updated on Sun, 01 Mar 2020 05:23:29 GMT contains 2962 apps.
Added (870)
Updated (78)
2020-03-01T05:53:18Z
submitted by BrainstormBot to FDroidUpdates [link] [comments]

How much would a Bitcoin node handling 1GB blocks cost today? I did some back-on-the-envelope calculations.

1GB blocks would be able to confirm more than 5000tx/s. That would be VISA-level scale (which handles, on average, 1736tx/s). We often hear that we shouldn't raise the blocksize because then nodes would become too expensive to run. But how expensive exactly?
We have the following costs to take into account:
For now, I'm going to assume a non-pruned full node (i.e. a node that stores all transactions of the blockchain) for personal use, i.e. for a computer built at home. I'll add in the calculations for a pruned node at the end, which would likely be the prefered option for people who merely want to verify the blockchain for themselves. If you don't care about the assumptions and calculations, you can just jump right to the end of this post. If you spotted any error, please inform me and I'll update my calculation.

Storage

There's, on average, one block every 10 minutes, that is 144 every day and 4320 blocks every thirty days. I was able to find a 3TB HDD for $47,50 on Amazon, that is $0.018/GB. Storing all blocks with all transactions of a month (4320GB) would be $78.96/mo. Prices for storage halved from 2014 to 2017, so we can assume that to half in 2022, thus we can reasonably assume it'd cost around $40/mo. in 2022.
But would such an inexpensive hard disk be able to keep up with writing all the data? I found a comparable cheap HDD which can write 127MB/s sequentially (which would be the writing mode of Bitcoin). That would be enough even for 76GB blocks!
Edit: For the UTXO set, we need very fast storage for both reading and writing. Peter__R, in his comment below, estimates this to be 1TB for 4 billion users (which would make ~46,000tx/s if everyone would make 1tx/day, so id'd require about 10GB blocks). jtoomim seems more pessimistic on that front, he says that much of that has to be in RAM. I'll add the $315 I've calculated below to account for that (which would be rather optimistic, keep in mind).

Bandwidth

Bandwidth is more complicated, because that can't just be shipped around like HDDs. I'll just take prices for my country, Germany, using the provider T-online, because I don't know how it works in the US. You can plug in your own numbers based on the calculations below.
1GB blocks/10 minute mean 1.7MB/s. However, this is an average, and we need some wiggle room for transaction spikes, for example at Christmas or Black Friday. VISA handles 150 million transactions per day, that is 1736tx/s, but can handle up to 24,000tx/s (source). So we should be able to handle 13.8x the average throughput, which would be 1.7MB/s x 13.8 = 23.46M/s, or 187.68Mbit/s. The plan on T-online for 250Mbit/s (translated) would be 54.95€/mo (plus setup minus a discount for the first 6 months which seems to cancel out so we'll ignore it), which would be $61.78/mo. This plan is an actual flatrate, so we don't have to worry about hitting any download limit.
Note, however, that we don't order bandwidth for only our Bitcoin node, but also for personal use. If we only needed 2MB/s for personal use, the plan would be 34.95€, thus our node would actually only cost the difference of 20€ per month, or $22.50/mo. Nielsen's Law of Internet Bandwidth claims that a high-end user's connection speed grows by 50% per year. If we assume this is true for pricing too, the bandwidth cost for ~200Mbit/s/mo. would go down to 12.5% (forgot how exponential growth works) 29.6% of its today's cost by 2022, which decreases our number to $2.81/mo. $6.66/mo.
Edit: jtoomim, markblundeberg and CaptainPatent point out that the node would have a much higher bandwidth for announcing transactions and uploading historical blocks. In theory, it would not be necessary to do any of those things and still be able to verify one's own transactions, by never broadcasting any transactions. That would be quite leechy behaviour, though. If we were to pick a higher data plan to get 1000MBit/s downstream and 500MBit/s upstream, it would cost 119.95€/mo., however this plan isn't widely available yet (both links in German). 500MBit/s of upstream would give us max. 21 connected nodes at transaction spikes, or max. 294 connected nodes at average load. That would cost $39.85 in 2022 (with correct exponential growth).

CPU/Memory

CPU/Memory will be bought once and can then run for tens of years, so we'll count these as setup costs. The specs needed, of course, depend on the optimization of the node software, but we'll assume the current bottlenecks will have been removed once running a node actually becomes demanding hardware-wise.
This paper establishes that a 2.4GHz Intel Westmere (Xeon E5620) CPU can verify 71000 signatures per second... which can be bought for $32.88 a pair on Ebay (note: this CPU is from Q1'10). We'd need to verify 76659tx/s at spikes (taking the 13.8x number), so that pair of CPUs (handle 142,000tx/s) seem to just fit right in (given one signature per tx). We'd also have to account for multiple signatures per transaction and all the other parts of verification of transactions, but it seems like the CPU costs are neglegible anyway if we don't buy the freshest hardware available. ~$100 at current prices seem reasonable. Given Moore's Law, we can assume that prices for CPUs half every two years (transistor count x1.4162), so in three years, the CPU(s) should cost around $35.22 ($100/1.4163).
For memory, we again have to take into account the transaction spikes. If we're very unlucky, and transactions spike and there won't be a block for ~1h, the mempool can become very large. If we take the factor of 13.8x from above, and 1h of unconfirmed transactions (20,000,000tx usually, 276,000,000tx on spikes), we'd need 82.8GB (for 300B per transaction).
I found 32GB of RAM (with ECC) for $106, so three of those give us 96GB of RAM for $318 and plenty remaining space for building hash trees, connection management and the operating system. Buying used hardware doesn't seem to decrease the cost significantly (we actually do need a lot of RAM, compared to CPU power).
Price of RAM seems to decrease by a factor of x100 every 10 years (x1.58510), so we can expect 96GB to cost around $79.89 ($318/1.5853) in 2022.
Of course, CPU and memory need to be compatible, which I haven't taken into account. Chug a mainboard (~$150) and a power supply (~$50) into the mix, and the total would be just over $600 for today's prices. Even if mainboard and power supply prices remain the same, we'd still only have to pay around $315 for the whole setup in 2022.

Electricity

I found the following power consumptions:
So we'd have 129W 147.6W + N*6W. Electricity cost average at 12ct/kWh in the US, in Germany this is higher at 30.22ct/kWh. In the US, it would cost $11.14 $12.75 + N*$0.52 (P*12ct/kWh / 1000 * 24h/day *30days / 100ct/$), in Germany 28.06€ 32.11€ + N*1.30€.
At the end of the first year, it would cost $20.12 $21.73/mo. in the US and 50.52€ 54.57€/mo. in Germany.
At the end of the second year, it would cost $29.11 $30.72/mo. for the US and 72.98€ 77.03€/mo. for Germany. It increases by $8.98/mo. per year in the US and by 22.46€/mo. per year in Germany.
Electricity prices in Germany have increased over time due to increased taxation; in the US the price increase has been below inflation rate the last two decades. As it's difficult to predict price changes here, I'm going to assume prices will remain the same.

Conclusion

In summary, we get:
If we add everything up, for today's prices, we get (E: updated all following numbers, but only changed slightly) $132/mo. (US), $187/mo. (DE) for the second year and $71.92/mo. $78/mo. (US), $115.79/mo. $124/mo. (DE) in 2022.
It definitely is quite a bit of money, but consider what that machine would actually do; it would basically do the equivalent of VISA's payment verification multiple times over, which is an amazing feat. Also, piano lessons cost around $50-$100 each, so if we consider a Bitcoin hobbyist, he would still pay much less for his hobby than a piano player, who'd pay about $400 per month. So it's entirely reasonable to assume that even if we had 1GB blocks, there would still be lots of people running full-nodes just so.
How about pruned nodes? Here, we only have to store the Unspent Transaction Output Set (UTXO set), which currently clocks in at 2.8GB. If blocks get 1000 times bigger, we can assume the UTXO set to become 2.8TB. I'll assume ordinary HDD's aren't goint to cut it for reading/writing the UTXO set at that scale, so we'll take some NVMe SSDs for that, currently priced at $105/TB. Three of them would increase our setup by $315 to $915, but decrease our monthly costs. E: However this UTXO set is also required for the non-pruned node, therefore the setup costs stay at $915. Even in the highest power state, the 3 SSDs will need only 18.6W in total, so we'll get a constant 147.6W for the whole system.
In total, this is:
In total, this is $35.25/mo. in the US and $58.57/mo. in Germany for today's prices, or (E:) $19.41/mo. (US) and (E:) $42.73/mo. (DE) in 2022's prices. Which looks very affordable even for a non-hobbyist.
E: spelling
E²: I've added the 3 NVEe SSDs for the UTXO set, as pointed out by others and fixed an error with exponentials, as I figured out.
submitted by eyeofpython to btc [link] [comments]

Transcript of discussion between an ASIC designer and several proof-of-work designers from #monero-pow channel on Freenode this morning

[08:07:01] lukminer contains precompiled cn/r math sequences for some blocks: https://lukminer.org/2019/03/09/oh-kay-v4r-here-we-come/
[08:07:11] try that with RandomX :P
[08:09:00] tevador: are you ready for some RandomX feedback? it looks like the CNv4 is slowly stabilizing, hashrate comes down...
[08:09:07] how does it even make sense to precompile it?
[08:09:14] mine 1% faster for 2 minutes?
[08:09:35] naturally we think the entire asic-resistance strategy is doomed to fail :) but that's a high-level thing, who knows. people may think it's great.
[08:09:49] about RandomX: looks like the cache size was chosen to make it GPU-hard
[08:09:56] looking forward to more docs
[08:11:38] after initial skimming, I would think it's possible to make a 10x asic for RandomX. But at least for us, we will only make an ASIC if there is not a total ASIC hostility there in the first place. That's better for the secret miners then.
[08:13:12] What I propose is this: we are working on an Ethash ASIC right now, and once we have that working, we would invite tevador or whoever wants to come to HK/Shenzhen and we walk you guys through how we would make a RandomX ASIC. You can then process this input in any way you like. Something like that.
[08:13:49] unless asics (or other accelerators) re-emerge on XMR faster than expected, it looks like there is a little bit of time before RandomX rollout
[08:14:22] 10x in what measure? $/hash or watt/hash?
[08:14:46] watt/hash
[08:15:19] so you can make 10 times more efficient double precisio FPU?
[08:16:02] like I said let's try to be productive. You are having me here, let's work together!
[08:16:15] continue with RandomX, publish more docs. that's always helpful.
[08:16:37] I'm trying to understand how it's possible at all. Why AMD/Intel are so inefficient at running FP calculations?
[08:18:05] midipoet ([email protected]/web/irccloud.com/x-vszshqqxwybvtsjm) has joined #monero-pow
[08:18:17] hardware development works the other way round. We start with 1) math then 2) optimization priority 3) hw/sw boundary 4) IP selection 5) physical implementation
[08:22:32] This still doesn't explain at which point you get 10x
[08:23:07] Weren't you the ones claiming "We can accelerate ProgPoW by a factor of 3x to 8x." ? I find it hard to believe too.
[08:30:20] sure
[08:30:26] so my idea: first we finish our current chip
[08:30:35] from simulation to silicon :)
[08:30:40] we love this stuff... we do it anyway
[08:30:59] now we have a communication channel, and we don't call each other names immediately anymore: big progress!
[08:31:06] you know, we russians have a saying "it was smooth on paper, but they forgot about ravines"
[08:31:12] So I need a bit more details
[08:31:16] ha ha. good!
[08:31:31] that's why I want to avoid to just make claims
[08:31:34] let's work
[08:31:40] RandomX comes in Sep/Oct, right?
[08:31:45] Maybe
[08:32:20] We need to audit it first
[08:32:31] ok
[08:32:59] we don't make chips to prove sw devs that their assumptions about hardware are wrong. especially not if these guys then promptly hardfork and move to the next wrong assumption :)
[08:33:10] from the outside, this only means that hw & sw are devaluing each other
[08:33:24] neither of us should do this
[08:33:47] we are making chips that can hopefully accelerate more crypto ops in the future
[08:33:52] signing, verifying, proving, etc.
[08:34:02] PoW is just a feature like others
[08:34:18] sech1: is it easy for you to come to Hong Kong? (visa-wise)
[08:34:20] or difficult?
[08:34:33] or are you there sometimes?
[08:34:41] It's kind of far away
[08:35:13] we are looking forward to more RandomX docs. that's the first step.
[08:35:31] I want to avoid that we have some meme "Linzhi says they can accelerate XYZ by factor x" .... "ha ha ha"
[08:35:37] right? we don't want that :)
[08:35:39] doc is almost finished
[08:35:40] What docs do you need? It's described pretty good
[08:35:41] so I better say nothing now
[08:35:50] we focus on our Ethash chip
[08:36:05] then based on that, we are happy to walk interested people through the design and what else it can do
[08:36:22] that's a better approach from my view than making claims that are laughed away (rightfully so, because no silicon...)
[08:36:37] ethash ASIC is basically a glorified memory controller
[08:36:39] sech1: tevador said something more is coming (he just did it again)
[08:37:03] yes, some parts of RandomX are not described well
[08:37:10] like dataset access logic
[08:37:37] RandomX looks like progpow for CPU
[08:37:54] yes
[08:38:03] it is designed to reflect CPU
[08:38:34] so any ASIC for it = CPU in essence
[08:39:04] of course there are still some things in regular CPU that can be thrown away for RandomX
[08:40:20] uncore parts are not used, but those will use very little power
[08:40:37] except for memory controller
[08:41:09] I'm just surprised sometimes, ok? let me ask: have you designed or taped out an asic before? isn't it risky to make assumptions about things that are largely unknown?
[08:41:23] I would worry
[08:41:31] that I get something wrong...
[08:41:44] but I also worry like crazy that CNv4 will blow up, where you guys seem to be relaxed
[08:42:06] I didn't want to bring up anything RandomX because CNv4 is such a nailbiter... :)
[08:42:15] how do you guys know you don't have asics in a week or two?
[08:42:38] we don't have experience with ASIC design, but RandomX is simply designed to exactly fit CPU capabilities, which is the best you can do anyways
[08:43:09] similar as ProgPoW did with GPUs
[08:43:14] some people say they want to do asic-resistance only until the vast majority of coins has been issued
[08:43:21] that's at least reasonable
[08:43:43] yeah but progpow totally will not work as advertised :)
[08:44:08] yeah, I've seen that comment about progpow a few times already
[08:44:11] which is no surprise if you know it's just a random sales story to sell a few more GPUs
[08:44:13] RandomX is not permanent, we are expecting to switch to ASIC friendly in a few years if possible
[08:44:18] yes
[08:44:21] that makes sense
[08:44:40] linzhi-sonia: how so? will it break or will it be asic-able with decent performance gains?
[08:44:41] are you happy with CNv4 so far?
[08:45:10] ah, long story. progpow is a masterpiece of deception, let's not get into it here.
[08:45:21] if you know chip marketing it makes more sense
[08:45:24] linzhi-sonia: So far? lol! a bit early to tell, don't you think?
[08:45:35] the diff is coming down
[08:45:41] first few hours looked scary
[08:45:43] I remain skeptical: I only see ASICs being reasonable if they are already as ubiquitous as smartphones
[08:45:46] yes, so far so good
[08:46:01] we kbew the diff would not come down ubtil affter block 75
[08:46:10] yes
[08:46:22] but first few hours it looks like only 5% hashrate left
[08:46:27] looked
[08:46:29] now it's better
[08:46:51] the next worry is: when will "unexplainable" hashrate come back?
[08:47:00] you hope 2-3 months? more?
[08:47:05] so give it another couple of days. will probably overshoot to the downside, and then rise a bit as miners get updated and return
[08:47:22] 3 months minimum turnaround, yes
[08:47:28] nah
[08:47:36] don't underestimate asicmakers :)
[08:47:54] you guys don't get #1 priority on chip fabs
[08:47:56] 3 months = 90 days. do you know what is happening in those 90 days exactly? I'm pretty sure you don't. same thing as before.
[08:48:13] we don't do any secret chips btw
[08:48:21] 3 months assumes they had a complete design ready to go, and added the last minute change in 1 day
[08:48:24] do you know who is behind the hashrate that is now bricked?
[08:48:27] innosilicon?
[08:48:34] hyc: no no, and no. :)
[08:48:44] hyc: have you designed or taped out a chip before?
[08:48:51] yes, many years ago
[08:49:10] then you should know that 90 days is not a fixed number
[08:49:35] sure, but like I said, other makers have greater demand
[08:49:35] especially not if you can prepare, if you just have to modify something, or you have more programmability in the chip than some people assume
[08:50:07] we are chipmakers, we would never dare to do what you guys are doing with CNv4 :) but maybe that just means you are cooler!
[08:50:07] and yes, programmability makes some aspect of turnaround easier
[08:50:10] all fine
[08:50:10] I hope it works!
[08:50:28] do you know who is behind the hashrate that is now bricked?
[08:50:29] inno?
[08:50:41] we suspect so, but have no evidence
[08:50:44] maybe we can try to find them, but we cannot spend too much time on this
[08:50:53] it's probably not so much of a secret
[08:51:01] why should it be, right?
[08:51:10] devs want this cat-and-mouse game? devs get it...
[08:51:35] there was one leak saying it's innosilicon
[08:51:36] so you think 3 months, ok
[08:51:43] inno is cool
[08:51:46] good team
[08:51:49] IP design house
[08:51:54] in Wuhan
[08:52:06] they send their people to conferences with fake biz cards :)
[08:52:19] pretending to be other companies?
[08:52:26] sure
[08:52:28] ha ha
[08:52:39] so when we see them, we look at whatever card they carry and laugh :)
[08:52:52] they are perfectly suited for secret mining games
[08:52:59] they made at most $6 million in 2 months of mining, so I wonder if it was worth it
[08:53:10] yeah. no way to know
[08:53:15] but it's good that you calculate!
[08:53:24] this is all about cost/benefit
[08:53:25] then you also understand - imagine the value of XMR goes up 5x, 10x
[08:53:34] that whole "asic resistance" thing will come down like a house of cards
[08:53:41] I would imagine they sell immediately
[08:53:53] the investor may fully understand the risk
[08:53:57] the buyer
[08:54:13] it's not healthy, but that's another discussion
[08:54:23] so mid-June
[08:54:27] let's see
[08:54:49] I would be susprised if CNv4 ASICs show up at all
[08:54:56] surprised*
[08:54:56] why?
[08:55:05] is only an economic question
[08:55:12] yeah should be interesting. FPGAs will be near their limits as well
[08:55:16] unless XMR goes up a lot
[08:55:19] no, not *only*. it's also a technology question
[08:55:44] you believe CNv4 is "asic resistant"? which feature?
[08:55:53] it's not
[08:55:59] cnv4 = Rabdomx ?
[08:56:03] no
[08:56:07] cnv4=cryptinight/r
[08:56:11] ah
[08:56:18] CNv4 is the one we have now, I think
[08:56:21] since yesterday
[08:56:30] it's plenty enough resistant for current XMR price
[08:56:45] that may be, yes!
[08:56:55] I look at daily payouts. XMR = ca. 100k USD / day
[08:57:03] it can hold until October, but it's not asic resistant
[08:57:23] well, last 24h only 22,442 USD :)
[08:57:32] I think 80 h/s per watt ASICs are possible for CNv4
[08:57:38] linzhi-sonia where do you produce your chips? TSMC?
[08:57:44] I'm cruious how you would expect to build a randomX ASIC that outperforms ARM cores for efficiency, or Intel cores for raw speed
[08:57:48] curious
[08:58:01] yes, tsmc
[08:58:21] Our team did the world's first bitcoin asic, Avalon
[08:58:25] and upcoming 2nd gen Ryzens (64-core EPYC) will be a blast at RandomX
[08:58:28] designed and manufactured
[08:58:53] still being marketed?
[08:59:03] linzhi-sonia: do you understand what xmr wants to achieve, community-wise?
[08:59:14] Avalon? as part of Canaan Creative, yes I think so.
[08:59:25] there's not much interesting oing on in SHA256
[08:59:29] Inge-: I would think so, but please speak
[08:59:32] hyc: yes
[09:00:28] linzhi-sonia: i am curious to hear your thoughts. I am fairly new to this space myself...
[09:00:51] oh
[09:00:56] we are grandpas, and grandmas
[09:01:36] yet I have no problem understanding why ASICS are currently reviled.
[09:01:48] xmr's main differentiators to, let's say btc, are anonymity and fungibility
[09:01:58] I find the client terribly slow btw
[09:02:21] and I think the asic-forking since last may is wrong, doesn't create value and doesn't help with the project objectives
[09:02:25] which "the client" ?
[09:02:52] Monero GUI client maybe
[09:03:12] MacOS, yes
[09:03:28] What exactly is slow?
[09:03:30] linzhi-sonia: I run my own node, and use the CLI and Monerujo. Have not had issues.
[09:03:49] staying in sync
[09:03:49] linzhi-sonia: decentralization is also a key principle
[09:03:56] one that Bitcoin has failed to maintain
[09:04:39] hmm
[09:05:00] looks fairly decentralized to me. decentralization is the result of 3 goals imo: resilient, trustless, permissionless
[09:05:28] don't ask a hardware maker about physical decentralization. that's too ideological. we focus on logical decentralization.
[09:06:11] physical decentralization is important. with bulk of bitnoin mining centered on Chinese hydroelectric dams
[09:06:19] have you thought about including block data in the PoW?
[09:06:41] yes, of course.
[09:07:39] is that already in an algo?
[09:08:10] hyc: about "centered on chinese hydro" - what is your source? the best paper I know is this: https://coinshares.co.uk/wp-content/uploads/2018/11/Mining-Whitepaper-Final.pdf
[09:09:01] linzhi-sonia: do you mine on your ASICs before you sell them?
[09:09:13] besides testing of course
[09:09:45] that paper puts Chinese btc miners at 60% max
[09:10:05] tevador: I think everybody learned that that is not healthy long-term!
[09:10:16] because it gives the chipmaker a cost advantage over its own customers
[09:10:33] and cost advantage leads to centralization (physical and logical)
[09:10:51] you guys should know who finances progpow and why :)
[09:11:05] but let's not get into this, ha ha. want to keep the channel civilized. right OhGodAGirl ? :)
[09:11:34] tevador: so the answer is no! 100% and definitely no
[09:11:54] that "self-mining" disease was one of the problems we have now with asics, and their bad reputation (rightfully so)
[09:13:08] I plan to write a nice short 2-page paper or so on our chip design process. maybe it's interesting to some people here.
[09:13:15] basically the 5 steps I mentioned before, from math to physical
[09:13:32] linzhi-sonia: the paper you linked puts 48% of bitcoin mining in Sichuan. the total in China is much more than 60%
[09:13:38] need to run it by a few people to fix bugs, will post it here when published
[09:14:06] hyc: ok! I am just sharing the "best" document I know today. it definitely may be wrong and there may be a better one now.
[09:14:18] hyc: if you see some reports, please share
[09:14:51] hey I am really curious about this: where is a PoW algo that puts block data into the PoW?
[09:15:02] the previous paper I read is from here http://hackingdistributed.com/2018/01/15/decentralization-bitcoin-ethereum/
[09:15:38] hyc: you said that already exists? (block data in PoW)
[09:15:45] it would make verification harder
[09:15:49] linzhi-sonia: https://the-eye.eu/public/Books/campdivision.com/PDF/Computers%20General/Privacy/bitcoin/meh/hashimoto.pdf
[09:15:51] but for chips it would be interesting
[09:15:52] we discussed the possibility about a year ago https://www.reddit.com/Monero/comments/8bshrx/what_we_need_to_know_about_proof_of_work_pow/
[09:16:05] oh good links! thanks! need to read...
[09:16:06] I think that paper by dryja was original
[09:17:53] since we have a nice flow - second question I'm very curious about: has anyone thought about in-protocol rewards for other functions?
[09:18:55] we've discussed micropayments for wallets to use remote nodes
[09:18:55] you know there is a lot of work in other coins about STARK provers, zero-knowledge, etc. many of those things very compute intense, or need to be outsourced to a service (zether). For chipmakers, in-protocol rewards create an economic incentive to accelerate those things.
[09:19:50] whenever there is an in-protocol reward, you may get the power of ASICs doing something you actually want to happen
[09:19:52] it would be nice if there was some economic reward for running a fullnode, but no one has come up with much more than that afaik
[09:19:54] instead of fighting them off
[09:20:29] you need to use asics, not fight them. that's an obvious thing to say for an asicmaker...
[09:20:41] in-protocol rewards can be very powerful
[09:20:50] like I said before - unless the ASICs are so useful they're embedded in every smartphone, I dont see them being a positive for decentralization
[09:21:17] if they're a separate product, the average consumer is not going to buy them
[09:21:20] now I was talking about speedup of verifying, signing, proving, etc.
[09:21:23] they won't even know what they are
[09:22:07] if anybody wants to talk about or design in-protocol rewards, please come talk to us
[09:22:08] the average consumer also doesn't use general purpose hardware to secure blockchains either
[09:22:14] not just for PoW, in fact *NOT* for PoW
[09:22:32] it requires sw/hw co-design
[09:23:10] we are in long-term discussions/collaboration over this with Ethereum, Bitcoin Cash. just talk right now.
[09:23:16] this was recently published though suggesting more uptake though I guess https://btcmanager.com/college-students-are-the-second-biggest-miners-of-cryptocurrency/
[09:23:29] I find it pretty hard to believe their numbers
[09:24:03] well
[09:24:09] sorry, original article: https://www.pcmag.com/news/366952/college-kids-are-using-campus-electricity-to-mine-crypto
[09:24:11] just talk, no? rumors
[09:24:18] college students are already more educated than the average consumer
[09:24:29] we are not seeing many such customers anymore
[09:24:30] it's data from cisco monitoring network traffic
[09:24:33] and they're always looking for free money
[09:24:48] of course anyone with "free" electricity is inclined to do it
[09:24:57] but look at the rates, cannot make much money
[09:26:06] Ethereum is a bloated collection of bugs wrapped in a UI. I suppose they need all the help they can get
[09:26:29] Bitcoin Cash ... just another get rich quick scheme
[09:26:38] hmm :)
[09:26:51] I'll give it back to you, ok? ha ha. arrogance comes before the fall...
[09:27:17] maye we should have a little fun with CNv4 mining :)
[09:27:25] ;)
[09:27:38] come on. anyone who has watched their track record... $75M lost in ETH at DAO hack
[09:27:50] every smart contract that comes along is just waiting for another hack
[09:27:58] I just wanted to throw out the "in-protocol reward" thing, maybe someone sees the idea and wants to cowork. maybe not. maybe it's a stupid idea.
[09:29:18] linzhi-sonia: any thoughts on CN-GPU?
[09:29:55] CN-GPU has one positive aspect - it wastes chip area to implement all 18 hash algorithms
[09:30:19] you will always hear roughly the same feedback from me:
[09:30:52] "This algorithm very different, it heavy use floating point operations to hurt FPGAs and general purpose CPUs"
[09:30:56] the problem is, if it's profitable for people to buy ASIC miners and mine, it's always more profitable for the manufacturer to not sell and mine themselves
[09:31:02] "hurt"
[09:31:07] what is the point of this?
[09:31:15] it totally doesn't work
[09:31:24] you are hurting noone, just demonstrating lack of ability to think
[09:31:41] what is better: algo designed for chip, or chip designed for algo?
[09:31:43] fireice does it on daily basis, CN-GPU is a joke
[09:31:53] tevador: that's not really true, especially in a market with such large price fluctuations as cryptocurrency
[09:32:12] it's far less risky to sell miners than mine with them and pray that price doesn't crash for next six months
[09:32:14] I think it's great that crypto has a nice group of asicmakers now, hw & sw will cowork well
[09:32:36] jwinterm yes, that's why they premine them and sell after
[09:32:41] PoW is about being thermodynamically and cryptographically provable
[09:32:45] premining with them is taking on that risk
[09:32:49] not "fork when we think there are asics"
[09:32:51] business is about risk minimization
[09:32:54] that's just fear-driven
[09:33:05] Inge-: that's roughly the feedback
[09:33:24] I'm not saying it hasn't happened, but I think it's not so simple as saying "it always happens"
[09:34:00] jwinterm: it has certainly happened on BTC. and also on XMR.
[09:34:19] ironically, please think about it: these kinds of algos indeed prove the limits of the chips they were designed for. but they don't prove that you cannot implement the same algo differently! cannot!
[09:34:26] Risk minimization is not starting a business at all.
[09:34:34] proof-of-gpu-limit. proof-of-cpu-limit.
[09:34:37] imagine you have a money printing machine, would you sell it?
[09:34:39] proves nothing for an ASIC :)
[09:35:05] linzhi-sonia: thanks. I dont think anyone believes you can't make a more efficient cn-gpu asic than a gpu - but that it would not be orders of magnitude faster...
[09:35:24] ok
[09:35:44] like I say. these algos are, that's really ironic, designed to prove the limitatios of a particular chip in mind of the designer
[09:35:50] exactly the wrong way round :)
[09:36:16] like the cache size in RandomX :)
[09:36:18] beautiful
[09:36:29] someone looked at GPU designs
[09:37:31] linzhi-sonia can you elaborate? Cache size in RandomX was selected to fit CPU cache
[09:37:52] yes
[09:38:03] too large for GPU
[09:38:11] as I said, we are designing the algorithm to exactly fit CPU capabilities, I do not claim an ASIC cannot be more efficient
[09:38:16] ok!
[09:38:29] when will you do the audit?
[09:38:35] will the results be published in a document or so?
[09:38:37] I claim that single-chip ASIC is not viable, though
[09:39:06] you guys are brave, noone disputes that. 3 anti-asic hardforks now!
[09:39:18] 4th one coming
[09:39:31] 3 forks were done not only for this
[09:39:38] they had scheduled updates in the first place
[09:48:10] Monero is the #1 anti-asic fighter
[09:48:25] Monero is #1 for a lot of reasons ;)
[09:48:40] It's the coin with the most hycs.
[09:48:55] mooooo
[09:59:06] sneaky integer overflow, bug squished
[10:38:00] p0nziph0ne ([email protected]/vpn/privateinternetaccess/p0nziph0ne) has joined #monero-pow
[11:10:53] The convo here is wild
[11:12:29] it's like geo-politics at the intersection of software and hardware manufacturing for thermoeconomic value.
[11:13:05] ..and on a Sunday.
[11:15:43] midipoet: hw and sw should work together and stop silly games to devalue each other. to outsiders this is totally not attractive.
[11:16:07] I appreciate the positive energy here to try to listen, learn, understand.
[11:16:10] that's a start
[11:16:48] <-- p0nziph0ne ([email protected]/vpn/privateinternetaccess/p0nziph0ne) has quit (Quit: Leaving)
[11:16:54] we won't do silly mining against xmr "community" wishes, but not because we couldn'd do it, but because it's the wrong direction in the long run, for both sides
[11:18:57] linzhi-sonia: I agree to some extent. Though, in reality, there will always be divergence between social worlds. Not every body has the same vision of the future. Reaching societal consensus on reality tomorrow is not always easy
[11:20:25] absolutely. especially at a time when there is so much profit to be made from divisiveness.
[11:20:37] someone will want to make that profit, for sure
[11:24:32] Yes. Money distorts.
[11:24:47] Or wealth...one of the two
[11:26:35] Too much physical money will distort rays of light passing close to it indeed.
submitted by jwinterm to Monero [link] [comments]

AN INTRODUCTION TO DIGIBYTE

DigiByte

What are cryptocurrencies?
Cryptocurrencies are peer to peer technology protocols which rely on the block-chain; a system of decentralized record keeping which allows people to exchange unmodifiable and indestructible information “coins,” globally in little to no time with little to no fees – this translates into the exchange of value as these coins cannot be counterfeit nor stolen. This concept was started by Satoshi Nakamoto (allegedly a pseudonym for a single man or organization) whom described and coded Bitcoin in 2009.
What is DigiByte?
DigiByte (DGB) is a cryptocurrency like Bitcoin. It is also a decentralized applications protocol in a similar fashion to Neo or Ethereum.
DigiByte was founded and created by Jared Tate in 2014. DigiByte allows for fast (virtually instant) and low cost (virtually free) transactions. DigiByte is hard capped at 21 billion coins which will ever be mined, over a period of 21 years. DigiByte was never an ICO and was mined/created in the same way that Bitcoin or Litecoin initially were.
DigiByte is the fastest UTXO PoW scalable block-chain in the world. We’ll cover what this really means down below.
DigiByte has put forth and applied solutions to many of the problems that have plagued Bitcoin and cryptocurrencies in general – those being:
We will address these point by point in the subsequent sections.
The DigiByte Protocol
DigiByte maintains these properties through use of various technological innovations which we will briefly address below.
Why so many coins? 21 Billion
When initially conceived Bitcoin was the first of a kind! And came into the hands of a few! The beginnings of a coin such as Bitcoin were difficult, it had to go through a lot of initial growth pains which following coins did not have to face. It is for this reason among others why I believe Bitcoin was capped at 21 million; and why today it has thus secured a place as digital gold.
When Bitcoin was first invented no one knew anything about cryptocurrencies, for the inventor to get them out to the public he would have to give them away. This is how the first Bitcoins were probably passed on, for free! But then as interest grew so did the community. For them to be able to build something and create something which could go on to have actual value, it would have to go through a steady growth phase. Therefore, the control of inflation through mining was extremely important. Also, why the cap for Bitcoin was probably set so low - to allow these coins to amass value without being destroyed by inflation (from mining) in the same way fiat is today! In my mind Satoshi Nakamoto knew what he was doing when setting it at 21 million BTC and must have known and even anticipated others would take his design and build on top of it.
At DigiByte, we are that better design and capped at 21 billion. That's 1000 times larger than the supply of Bitcoin. Why though? Why is the cap on DigiByte so much higher than that of Bitcoin? Because DigiByte was conceived to be used not as a digital gold, nor as any sort of commodity, but as a real currency!
Today on planet Earth, we are approximately 7.6 billion people. If each person should want or need to use and live off Bitcoin; then equally split at best each person could only own 0.00276315789 BTC. The market cap for all the money on the whole planet today is estimated to have recently passed 80 trillion dollars. That means that each whole unit of Bitcoin would be worth approximately $3,809,523.81!
$3,809,523.81
This is of course in an extreme case where everyone used Bitcoin for everything. But even in a more conservative scenario the fact remains that with such a low supply each unit of a Bitcoin would become absurdly expensive if not inaccessible to most. Imagine trying to buy anything under a dollar!
Not only would using Bitcoin as an everyday currency be a logistical nightmare but it would be nigh impossible. For each Satoshi of a Bitcoin would be worth much, much, more than what is realistically manageable.
This is where DigiByte comes in and where it shines. DigiByte aims to be used world-wide as an international currency! Not to be hoarded in the same way Bitcoin is. If we were to do some of the same calculations with DigiByte we'd find that the numbers are a lot more reasonable.
At 7.6 billion people, each person could own 2.76315789474 DGB. Each whole unit of DGB would be worth approximately $3,809.52.
$3,809.52
This is much more manageable and remember in an extreme case where everyone used DigiByte for everything! I don't expect this to happen anytime soon, but with the supply of DigiByte it would allow us to live and transact in a much more realistic and fluid fashion. Without having to divide large numbers on our phone's calculator to understand how much we owe for that cup of coffee! With DigiByte it's simple, coffee cost 1.5 DGB, the cinema 2.8 DGB, a plane ticket 500 DGB!
There is a reason for DigiByte's large supply, and it is a good one!
Decentralisation
Decentralisation is an important concept for the block-chain and cryptocurrencies in general. This allows for a system which cannot be controlled nor manipulated no matter how large the organization in play or their intentions. DigiByte’s chain remains out of the reach of even the most powerful government. This allows for people to transact freely and openly without fear of censorship.
Decentralisation on the DigiByte block-chain is assured by having an accessible and fair mining protocol in place – this is the multi-algorithm (MultiAlgo) approach. We believe that all should have access to DigiByte whether through purchase or by mining. Therefore, DigiByte is minable not only on dedicated mining hardware such as Antminers, but also through use of conventional graphics cards. The multi-algorithm approach allows for users to mine on a variety of hardware types through use of one of the 5 mining algorithms supported by DigiByte. Those being:
Please note that these mining algorithms are modified and updated from time to time to assure complete decentralisation and thus ultimate security.
The problem with using only one mining algorithm such as Bitcoin or Litecoin do is that this allows for people to continually amass mining hardware and hash power. The more hash power one has, the more one can collect more. This leads to a cycle of centralisation and the creation of mining centres. It is known that a massive portion of all hash power in Bitcoin comes from China. This kind of centralisation is a natural tendency as it is cheaper for large organisations to set up in countries with inexpensive electricity and other such advantages which may be unavailable to the average miner.
DigiByte mitigates this problem with the use of multiple algorithms. It allows for miners with many different kinds of hardware to mine the same coin on an even playing field. Mining difficulty is set relative to the mining algorithm used. This allows for those with dedicated mining rigs to mine alongside those with more modest machines – and all secure the DigiByte chain while maintaining decentralisation.
Low Fees
Low fees are maintained in DigiByte thanks to the MultiAlgo approach working in conjunction with MultiShield (originally known as DigiShield). MultiShield calls for block difficulty readjustment between every single block on the chain; currently blocks last 15 seconds. This continuous difficulty readjustment allows us to combat any bad actors which may wish to manipulate the DigiByte chain.
Manipulation may be done by a large pool or a single entity with a great amount of hash power mining blocks on the chain; thus, increasing the difficulty of the chain. In some coins such as Bitcoin or Litecoin difficulty is readjusted every 2016 blocks at approximately 10mins each and 2mins respectively. Meaning that Bitcoin’s difficulty is readjusted about every two weeks. This system can allow for large bad actors to mine a coin and then abandon it, leaving it with a difficulty level far too high for the present hash rate – and so transactions can be frozen, and the chain stopped until there is a difficulty readjustment and or enough hash power to mine the chain. In such a case users may be faced with a choice - pay exorbitant fees or have their transactions frozen. In an extreme case the whole chain could be frozen completely for extended periods of time.
DigiByte does not face this problem as its difficulty is readjusted per block every 15 seconds. This innovation was a technological breakthrough and was adopted by several other coins in the cryptocurrency environment such as Dogecoin, Z-Cash, Ubiq, Monacoin, and Bitcoin Gold.
This difficulty readjustment along with the MultiAlgo approach allows DigiByte to maintain the lowest fees of any UTXO – PoW – chain in the world. Currently fees on the DigiByte block-chain are at about 0.0001 DGB per transaction of 100 000 DGB sent. This depends on the amount sent and currently 100 000 DGB are worth around $2000.00 with the fee being less than 0.000002 cents. It would take 500 000 transactions of 100 000 DGB to equal 1 penny’s worth. This was tested on a Ledger Nano S set to the low fees setting.
Fast transaction times
Fast transactions are ensured by the conjunctive use of the two aforementioned technology protocols. The use of MultiShield and MultiAlgo allows the mining of the DigiByte chain to always be profitable and thus there is always someone mining your transactions. MultiAlgo allows there to a greater amount of hash power spread world-wide, this along with 15 second block times allows for transactions to be near instantaneous. This speed is also ensured by the use DigiSpeed. DigiSpeed is the protocol by which the DigiByte chain will decrease block timing gradually. Initially DigiByte started with 30 second block times in 2014; which today are set at 15 seconds. This decrease will allow for ever faster and ever more transactions per block.
Robust security + The Immutable Ledger
At the core of cryptocurrency security is decentralisation. As stated before decentralisation is ensured on the DigiByte block chain by use of the MultiAlgo approach. Each algorithm in the MultiAlgo approach of DigiByte is only allowed about 20% of all new blocks. This in conjunction with MultiShield allows for DigiByte to be the most secure, most reliable, and fastest UTXO block chain on the planet. This means that DigiByte is a proof of work (PoW) block-chain where all transactional activities are stored on the immutable public ledger world-wide. In DigiByte there is no need for the Lightning protocol (although we have it) nor sidechains to scale, and thus we get to keep PoW’s security.
There are many great debates as to the robustness or cleanliness of PoW. The fact remains that PoW block-chains remain the only systems in human history which have never been hacked and thus their security is maximal.
For an attacker to divert the DigiByte chain they would need to control over 93% of all the hashrate on one algorithm and 51% of the other four. And so DigiByte is immune to the infamous 51% attack to which Bitcoin and Litecoin are vulnerable.
Moreover, the DigiByte block-chain is currently spread over 200 000 plus servers, computers, phones, and other machines world-wide. The fact is that DigiByte is one of the easiest to mine coins there is – this is greatly aided by the recent release of the one click miner. This allows for ever greater decentralisation which in turn assures that there is no single point of failure and the chain is thus virtually un-attackable.
On Chain Scalability
The biggest barrier for block-chains today is scalability. Visa the credit card company can handle around 2000 transactions per second (TPS) today. This allows them to ensure customer security and transactional rates nation-wide. Bitcoin currently sits at around 7 TPS and Litecoin at 28 TPS (56 TPS with SegWit). All the technological innovations I’ve mentioned above come together to allow for DigiByte to be the fastest PoW block-chain in the world and the most scalable.
DigiByte is scalable because of DigiSpeed, the protocol through which block times are decreased and block sizes are increased. It is known that a simple increase in block size can increase the TPS of any block-chain, such is the case with Bitcoin Cash. This is however not scalable. The reason a simple increase in block size is not scalable is because it would eventually lead to some if not a great amount of centralization. This centralization occurs because larger block sizes mean that storage costs and thus hardware cost for miners increases. This increase along with full blocks – meaning many transactions occurring on the chain – will inevitably bar out the average miner after difficulty increases and mining centres consolidate.
Hardware cost, and storage costs decrease over time following Moore’s law and DigiByte adheres to it perfectly. DigiSpeed calls for the increase in block sizes and decrease in block timing every two years by a factor of two. This means that originally DigiByte’s block sizes were 1 MB at 30 seconds each at inception in 2014. In 2016 DigiByte increased block size by two and decreased block timing by the same factor. Perfectly following Moore’s law. Moore’s law dictates that in general hardware increases in power by a factor of two while halving in cost every year.
This would allow for DigiByte to scale at a steady rate and for people to adopt new hardware at an equally steady rate and reasonable expense. Thus so, the average miner can continue to mine DigiByte on his algorithm of choice with entry level hardware.
DigiByte was one of the first block chains to adopt segregated witness (SegWit in 2017) a protocol whereby a part of transactional data is removed and stored elsewhere to decrease transaction data weight and thus increase scalability and speed. This allows us to fit more transactions per block which does not increase in size!
DigiByte currently sits at 560 TPS and could scale to over 280 000 TPS by 2035. This dwarfs any of the TPS capacities; even projected/possible capacities of some coins and even private companies. In essence DigiByte could scale worldwide today and still be reliable and robust. DigiByte could even handle the cumulative transactions of all the top 50 coins in coinmarketcap.com and still run smoothly and below capacity. In fact, to max out DigiByte’s actual maximum capacity (today at 560 TPS) you would have to take all these transactions and multiply them by a factor of 10!
Oher Uses for DigiByte
Note that DigiByte is not only to be used as a currency. Its immense robustness, security and scalability make it ideal for building decentralised applications (DAPPS) which it can host. DigiByte can in fact host DAPPS and even centralised versions which rely on the chain which are known as Digi-Apps. This application layer is also accompanied by a smart contract layer.
Thus, DigiByte could host several Crypto Kitties games and more without freezing out or increasing transaction costs for the end user.
Currently there are various DAPPS being built on the DigiByte block-chain, these are done independently of the DigiByte core team. These companies are simply using the DigiByte block-chain as a utility much in the same way one uses a road to get to work. One such example is Loly – a Tinderesque consensual dating application.
DigiByte also hosts a variety of other platform projects such as the following:
The DigiByte Foundation
As previously mentioned DigiByte was not an ICO. The DigiByte foundation was established in 2017 by founder Jared Tate. Its purpose is as a non-profit organization dedicated to supporting and developing the DigiByte block-chain.
DigiByte is a community effort and a community coin, to be treated as a public resource as water or air. Know that anyone can work on DigiByte, anyone can create, and do as they wish. It is a permissionless system which encourages innovation and creation. If you have an idea and or would like to get help on your project do not hesitate to contact the DigiByte foundation either through the official website and or the telegram developer’s channel.
For this reason, it is ever more important to note that the DigiByte foundation cannot exist without public support. And so, this is the reason I encourage all to donate to the foundation. All funds are used for the maintenance of DigiByte servers, marketing, and DigiByte development.
DigiByte Resources and Websites
DigiByte
Wallets
Explorers
Please refer to the sidebar of this sub-reddit for more resources and information.
Edit - Removed Jaxx wallet.
Edit - A new section was added to the article: Why so many coins? 21 Billion
Edit - Adjusted max capacity of DGB's TPS - Note it's actually larger than I initially calculated.
Edit – Grammar and format readjustment
Hello,
I hope you’ve enjoyed my article, I originally wrote this for the reddit sub-wiki where it generally will most likely, probably not, get a lot of attention. So instead I've decided to make this sort of an introductory post, an open letter, to any newcomers to DGB or for those whom are just curious.
I tried to cover every aspect of DGB, but of course I may have forgotten something! Please leave a comment down below and tell me why you're in DGB? What convinced you? Me it's the decentralised PoW that really convinced me. Plus, just that transaction speed and virtually no fees! Made my mouth water!
-Dereck de Mézquita
I'm a student typing this stuff on my free time, help me pay my debts? Thank you!
D64fAFQvJMhrBUNYpqUKQjqKrMLu76j24g
https://digiexplorer.info/address/D64fAFQvJMhrBUNYpqUKQjqKrMLu76j24g
submitted by xeno_biologist to Digibyte [link] [comments]

Searching for the Unicorn Cryptocurrency

Searching for the Unicorn Cryptocurrency
For someone first starting out as a cryptocurrency investor, finding a trustworthy manual for screening a cryptocurrency’s merits is nonexistent as we are still in the early, Wild West days of the cryptocurrency market. One would need to become deeply familiar with the inner workings of blockchain to be able to perform the bare minimum due diligence.
One might believe, over time, that finding the perfect cryptocurrency may be nothing short of futile. If a cryptocurrency purports infinite scalability, then it is probably either lightweight with limited features or it is highly centralized among a limited number of nodes that perform consensus services especially Proof of Stake or Delegated Proof of Stake. Similarly, a cryptocurrency that purports comprehensive privacy may have technical obstacles to overcome if it aims to expand its applications such as in smart contracts. The bottom line is that it is extremely difficult for a cryptocurrency to have all important features jam-packed into itself.
The cryptocurrency space is stuck in the era of the “dial-up internet” in a manner of speaking. Currently blockchain can’t scale – not without certain tradeoffs – and it hasn’t fully resolved certain intractable issues such as user-unfriendly long addresses and how the blockchain size is forever increasing to name two.
In other words, we haven’t found the ultimate cryptocurrency. That is, we haven’t found the mystical unicorn cryptocurrency that ushers the era of decentralization while eschewing all the limitations of traditional blockchain systems.
“But wait – what about Ethereum once it implements sharding?”
“Wouldn’t IOTA be able to scale infinitely with smart contracts through its Qubic offering?”
“Isn’t Dash capable of having privacy, smart contracts, and instantaneous transactions?”
Those thoughts and comments may come from cryptocurrency investors who have done their research. It is natural for the informed investors to invest in projects that are believed to bring cutting edge technological transformation to blockchain. Sooner or later, the sinking realization will hit that any variation of the current blockchain technology will always likely have certain limitations.
Let us pretend that there indeed exists a unicorn cryptocurrency somewhere that may or may not be here yet. What would it look like, exactly? Let us set the 5 criteria of the unicorn cryptocurrency:
Unicorn Criteria
(1) Perfectly solves the blockchain trilemma:
o Infinite scalability
o Full security
o Full decentralization
(2) Zero or minimal transaction fee
(3) Full privacy
(4) Full smart contract capabilities
(5) Fair distribution and fair governance
For each of the above 5 criteria, there would not be any middle ground. For example, a cryptocurrency with just an in-protocol mixer would not be considered as having full privacy. As another example, an Initial Coin Offering (ICO) may possibly violate criterion (5) since with an ICO the distribution and governance are often heavily favored towards an oligarchy – this in turn would defy the spirit of decentralization that Bitcoin was found on.
There is no cryptocurrency currently that fits the above profile of the unicorn cryptocurrency. Let us examine an arbitrary list of highly hyped cryptocurrencies that meet the above list at least partially. The following list is by no means comprehensive but may be a sufficient sampling of various blockchain implementations:
Bitcoin (BTC)
Bitcoin is the very first and the best known cryptocurrency that started it all. While Bitcoin is generally considered extremely secure, it suffers from mining centralization to a degree. Bitcoin is not anonymous, lacks smart contracts, and most worrisomely, can only do about 7 transactions per seconds (TPS). Bitcoin is not the unicorn notwithstanding all the Bitcoin maximalists.
Ethereum (ETH)
Ethereum is widely considered the gold standard of smart contracts aside from its scalability problem. Sharding as part of Casper’s release is generally considered to be the solution to Ethereum’s scalability problem.
The goal of sharding is to split up validating responsibilities among various groups or shards. Ethereum’s sharding comes down to duplicating the existing blockchain architecture and sharing a token. This does not solve the core issue and simply kicks the can further down the road. After all, full nodes still need to exist one way or another.
Ethereum’s blockchain size problem is also an issue as will be explained more later in this article.
As a result, Ethereum is not the unicorn due to its incomplete approach to scalability and, to a degree, security.
Dash
Dash’s masternodes are widely considered to be centralized due to their high funding requirements, and there are accounts of a pre-mine in the beginning. Dash is not the unicorn due to its questionable decentralization.
Nano
Nano boasts rightfully for its instant, free transactions. But it lacks smart contracts and privacy, and it may be exposed to well orchestrated DDOS attacks. Therefore, it goes without saying that Nano is not the unicorn.
EOS
While EOS claims to execute millions of transactions per seconds, a quick glance reveals centralized parameters with 21 nodes and a questionable governance system. Therefore, EOS fails to achieve the unicorn status.
Monero (XMR)
One of the best known and respected privacy coins, Monero lacks smart contracts and may fall short of infinite scalability due to CryptoNote’s design. The unicorn rank is out of Monero’s reach.
IOTA
IOTA’s scalability is based on the number of transactions the network processes, and so its supposedly infinite scalability would fluctuate and is subject to the whims of the underlying transactions. While IOTA’s scalability approach is innovative and may work in the long term, it should be reminded that the unicorn cryptocurrency has no middle ground. The unicorn cryptocurrency would be expected to scale infinitely on a consistent basis from the beginning.
In addition, IOTA’s Masked Authenticated Messaging (MAM) feature does not bring privacy to the masses in a highly convenient manner. Consequently, the unicorn is not found with IOTA.

PascalCoin as a Candidate for the Unicorn Cryptocurrency
Please allow me to present a candidate for the cryptocurrency unicorn: PascalCoin.
According to the website, PascalCoin claims the following:
“PascalCoin is an instant, zero-fee, infinitely scalable, and decentralized cryptocurrency with advanced privacy and smart contract capabilities. Enabled by the SafeBox technology to become the world’s first blockchain independent of historical operations, PascalCoin possesses unlimited potential.”
The above summary is a mouthful to be sure, but let’s take a deep dive on how PascalCoin innovates with the SafeBox and more. Before we do this, I encourage you to first become acquainted with PascalCoin by watching the following video introduction:
https://www.youtube.com/watch?time_continue=4&v=F25UU-0W9Dk
The rest of this section will be split into 10 parts in order to illustrate most of the notable features of PascalCoin. Naturally, let’s start off with the SafeBox.
Part #1: The SafeBox
Unlike traditional UTXO-based cryptocurrencies in which the blockchain records the specifics of each transaction (address, sender address, amount of funds transferred, etc.), the blockchain in PascalCoin is only used to mutate the SafeBox. The SafeBox is a separate but equivalent cryptographic data structure that snapshots account balances. PascalCoin’s blockchain is comparable to a machine that feeds the most important data – namely, the state of an account – into the SafeBox. Any node can still independently compute and verify the cumulative Proof-of-Work required to construct the SafeBox.
The PascalCoin whitepaper elegantly highlights the unique historical independence that the SafeBox possesses:
“While there are approaches that cryptocurrencies could use such as pruning, warp-sync, "finality checkpoints", UTXO-snapshotting, etc, there is a fundamental difference with PascalCoin. Their new nodes can only prove they are on most-work-chain using the infinite history whereas in PascalCoin, new nodes can prove they are on the most-work chain without the infinite history.”
Some cryptocurrency old-timers might instinctively balk at the idea of full nodes eschewing the entire history for security, but such a reaction would showcase a lack of understanding on what the SafeBox really does.
A concrete example would go a long way to best illustrate what the SafeBox does. Let’s say I input the following operations in my calculator:
5 * 5 – 10 / 2 + 5
It does not take a genius to calculate the answer, 25. Now, the expression “5 \ 5 – 10 / 2 + 5”* would be forever imbued on a traditional blockchain’s history. But the SafeBox begs to differ. It says that the expression “5 \ 5 – 10 / 2 + 5”* should instead be simply “25” so as preserve simplicity, time, and space. In other words, the SafeBox simply preserves the account balance.
But some might still be unsatisfied and claim that if one cannot trace the series of operations (transactions) that lead to the final number (balance) of 25, the blockchain is inherently insecure.
Here are four important security aspects of the SafeBox that some people fail to realize:
(1) SafeBox Follows the Longest Chain of Proof-of-Work
The SafeBox mutates itself per 100 blocks. Each new SafeBox mutation must reference both to the previous SafeBox mutation and the preceding 100 blocks in order to be valid, and the resultant hash of the new mutated SafeBox must then be referenced by each of the new subsequent blocks, and the process repeats itself forever.
The fact that each new SafeBox mutation must reference to the previous SafeBox mutation is comparable to relying on the entire history. This is because the previous SafeBox mutation encapsulates the result of cumulative entire history except for the 100 blocks which is why each new SafeBox mutation requires both the previous SafeBox mutation and the preceding 100 blocks.
So in a sense, there is a single interconnected chain of inflows and outflows, supported by Byzantine Proof-of-Work consensus, instead of the entire history of transactions.
More concretely, the SafeBox follows the path of the longest chain of Proof-of-Work simply by design, and is thus cryptographically equivalent to the entire history even without tracing specific operations in the past. If the chain is rolled back with a 51% attack, only the attacker’s own account(s) in the SafeBox can be manipulated as is explained in the next part.
(2) A 51% Attack on PascalCoin Functions the Same as Others
A 51% attack on PascalCoin would work in a similar way as with other Proof-of-Work cryptocurrencies. An attacker cannot modify a transaction in the past without affecting the current SafeBox hash which is accepted by all honest nodes.
Someone might claim that if you roll back all the current blocks plus the 100 blocks prior to the SafeBox’s mutation, one could create a forged SafeBox with different balances for all accounts. This would be incorrect as one would be able to manipulate only his or her own account(s) in the SafeBox with a 51% attack – just as is the case with other UTXO cryptocurrencies. The SafeBox stores the balances of all accounts which are in turn irreversibly linked only to their respective owners’ private keys.
(3) One Could Preserve the Entire History of the PascalCoin Blockchain
No blockchain data in PascalCoin is ever deleted even in the presence of the SafeBox. Since the SafeBox is cryptographically equivalent to a full node with the entire history as explained above, PascalCoin full nodes are not expected to contain infinite history. But for whatever reason(s) one may have, one could still keep all the PascalCoin blockchain history as well along with the SafeBox as an option even though it would be redundant.
Without storing the entire history of the PascalCoin blockchain, you can still trace the specific operations of the 100 blocks prior to when the SafeBox absorbs and reflects the net result (a single balance for each account) from those 100 blocks. But if you’re interested in tracing operations over a longer period in the past – as redundant as that may be – you’d have the option to do so by storing the entire history of the PascalCoin blockchain.
(4) The SafeBox is Equivalent to the Entire Blockchain History
Some skeptics may ask this question: “What if the SafeBox is forever lost? How would you be able to verify your accounts?” Asking this question is tantamount to asking to what would happen to Bitcoin if all of its entire history was erased. The result would be chaos, of course, but the SafeBox is still in line with the general security model of a traditional blockchain with respect to black swans.
Now that we know the security of the SafeBox is not compromised, what are the implications of this new blockchain paradigm? A colorful illustration as follows still wouldn’t do justice to the subtle revolution that the SafeBox ushers. The automobiles we see on the street are the cookie-and-butter representation of traditional blockchain systems. The SafeBox, on the other hand, supercharges those traditional cars to become the Transformers from Michael Bay’s films.
The SafeBox is an entirely different blockchain architecture that is impressive in its simplicity and ingenuity. The SafeBox’s design is only the opening act for PascalCoin’s vast nuclear arsenal. If the above was all that PascalCoin offers, it still wouldn’t come close to achieving the unicorn status but luckily, we have just scratched the surface. Please keep on reading on if you want to learn how PascalCoin is going to shatter the cryptocurrency industry into pieces. Buckle down as this is going to be a long read as we explore further about the SafeBox’s implications.
Part #2: 0-Confirmation Transactions
To begin, 0-confirmation transactions are secure in PascalCoin thanks to the SafeBox.
The following paraphrases an explanation of PascalCoin’s 0-confirmations from the whitepaper:
“Since PascalCoin is not a UTXO-based currency but rather a State-based currency thanks to the SafeBox, the security guarantee of 0-confirmation transactions are much stronger than in UTXO-based currencies. For example, in Bitcoin if a merchant accepts a 0-confirmation transaction for a coffee, the buyer can simply roll that transaction back after receiving the coffee but before the transaction is confirmed in a block. The way the buyer does this is by re-spending those UTXOs to himself in a new transaction (with a higher fee) thus invalidating them for the merchant. In PascalCoin, this is virtually impossible since the buyer's transaction to the merchant is simply a delta-operation to debit/credit a quantity from/to accounts respectively. The buyer is unable to erase or pre-empt this two-sided, debit/credit-based transaction from the network’s pending pool until it either enters a block for confirmation or is discarded with respect to both sender and receiver ends. If the buyer tries to double-spend the coffee funds after receiving the coffee but before they clear, the double-spend transaction will not propagate the network since nodes cannot propagate a double-spending transaction thanks to the debit/credit nature of the transaction. A UTXO-based transaction is initially one-sided before confirmation and therefore is more exposed to one-sided malicious schemes of double spending.”
Phew, that explanation was technical but it had to be done. In summary, PascalCoin possesses the only secure 0-confirmation transactions in the cryptocurrency industry, and it goes without saying that this means PascalCoin is extremely fast. In fact, PascalCoin is capable of 72,000 TPS even prior to any additional extensive optimizations down the road. In other words, PascalCoin is as instant as it gets and gives Nano a run for its money.
Part #3: Zero Fee
Let’s circle back to our discussion of PascalCoin’s 0-confirmation capability. Here’s a little fun magical twist to PascalCoin’s 0-confirmation magic: 0-confirmation transactions are zero-fee. As in you don’t pay a single cent in fee for each 0-confirmation! There is just a tiny downside: if you create a second transaction in a 5-minute block window then you’d need to pay a minimal fee. Imagine using Nano but with a significantly stronger anti-DDOS protection for spam! But there shouldn’t be any complaint as this fee would amount to 0.0001 Pascal or $0.00002 based on the current price of a Pascal at the time of this writing.
So, how come the fee for blazingly fast transactions is nonexistent? This is where the magic of the SafeBox arises in three ways:
(1) PascalCoin possesses the secure 0-confirmation feature as discussed above that enables this speed.
(2) There is no fee bidding competition of transaction priority typical in UTXO cryptocurrencies since, once again, PascalCoin operates on secure 0-confirmations.
(3) There is no fee incentive needed to run full nodes on behalf of the network’s security beyond the consensus rewards.
Part #4: Blockchain Size
Let’s expand more on the third point above, using Ethereum as an example. Since Ethereum’s launch in 2015, its full blockchain size is currently around 2 TB, give or take, but let’s just say its blockchain size is 100 GB for now to avoid offending the Ethereum elitists who insist there are different types of full nodes that are lighter. Whoever runs Ethereum’s full nodes would expect storage fees on top of the typical consensus fees as it takes significant resources to shoulder Ethereum’s full blockchain size and in turn secure the network. What if I told you that PascalCoin’s full blockchain size will never exceed few GBs after thousands of years? That is just what the SafeBox enables PascalCoin to do so. It is estimated that by 2072, PascalCoin’s full nodes will only be 6 GB which is low enough not to warrant any fee incentives for hosting full nodes. Remember, the SafeBox is an ultra-light cryptographic data structure that is cryptographically equivalent to a blockchain with the entire transaction history. In other words, the SafeBox is a compact spreadsheet of all account balances that functions as PascalCoin’s full node!
Not only does the SafeBox’s infinitesimal memory size helps to reduce transaction fees by phasing out any storage fees, but it also paves the way for true decentralization. It would be trivial for every PascalCoin user to opt a full node in the form of a wallet. This is extreme decentralization at its finest since the majority of users of other cryptocurrencies ditch full nodes due to their burdensome sizes. It is naïve to believe that storage costs would reduce enough to the point where hosting full nodes are trivial. Take a look at the following chart outlining the trend of storage cost.

* https://www.backblaze.com/blog/hard-drive-cost-per-gigabyte/
As we can see, storage costs continue to decrease but the descent is slowing down as is the norm with technological improvements. In the meantime, blockchain sizes of other cryptocurrencies are increasing linearly or, in the case of smart contract engines like Ethereum, parabolically. Imagine a cryptocurrency smart contract engine like Ethereum garnering worldwide adoption; how do you think Ethereum’s size would look like in the far future based on the following chart?


https://i.redd.it/k57nimdjmo621.png

Ethereum’s future blockchain size is not looking pretty in terms of sustainable security. Sharding is not a fix for this issue since there still needs to be full nodes but that is a different topic for another time.
It is astonishing that the cryptocurrency community as a whole has passively accepted this forever-expanding-blockchain-size problem as an inescapable fate.
PascalCoin is the only cryptocurrency that has fully escaped the death vortex of forever expanding blockchain size. Its blockchain size wouldn’t exceed 10 GB even after many hundreds of years of worldwide adoption. Ethereum’s blockchain size after hundreds of years of worldwide adoption would make fine comedy.
Part #5: Simple, Short, and Ordinal Addresses
Remember how the SafeBox works by snapshotting all account balances? As it turns out, the account address system is almost as cool as the SafeBox itself.
Imagine yourself in this situation: on a very hot and sunny day, you’re wandering down the street across from your house and ran into a lemonade stand – the old-fashioned kind without any QR code or credit card terminal. The kid across you is selling a lemonade cup for 1 Pascal with a poster outlining the payment address as 5471-55. You flip out your phone and click “Send” with 1 Pascal to the address 5471-55; viola, exactly one second later you’re drinking your lemonade without paying a cent for the transaction fee!
The last thing one wants to do is to figure out how to copy/paste to, say, the following address 1BoatSLRHtKNngkdXEeobR76b53LETtpyT on the spot wouldn’t it? Gone are the obnoxiously long addresses that plague all cryptocurrencies. The days of those unreadable addresses will be long gone – it has to be if blockchain is to innovate itself for the general public. EOS has a similar feature for readable addresses but in a very limited manner in comparison, and nicknames attached to addresses in GUIs don’t count since blockchain-wide compatibility wouldn’t hold.
Not only does PascalCoin has the neat feature of having addresses (called PASAs) that amount to up to 6 or 7 digits, but PascalCoin can also incorporate in-protocol address naming as opposed to GUI address nicknames. Suppose I want to order something from Amazon using Pascal; I simply search the word “Amazon” then the corresponding account number shows up. Pretty neat, right?
The astute reader may gather that PascalCoin’s address system makes it necessary to commoditize addresses, and he/she would be correct. Some view this as a weakness; part #10 later in this segment addresses this incorrect perception.
Part #6: Privacy
As if the above wasn’t enough, here’s another secret that PascalCoin has: it is a full-blown privacy coin. It uses two separate foundations to achieve comprehensive anonymity: in-protocol mixer for transfer amounts and zn-SNARKs for private balances. The former has been implemented and the latter is on the roadmap. Both the 0-confirmation transaction and the negligible transaction fee would make PascalCoin the most scalable privacy coin of any other cryptocurrencies pending the zk-SNARKs implementation.
Part #7: Smart Contracts
Next, PascalCoin will take smart contracts to the next level with a layer-2 overlay consensus system that pioneers sidechains and other smart contract implementations.
In formal terms, this layer-2 architecture will facilitate the transfer of data between PASAs which in turn allows clean enveloping of layer-2 protocols inside layer-1 much in the same way that HTTP lives inside TCP.
To summarize:
· The layer-2 consensus method is separate from the layer-1 Proof-of-Work. This layer-2 consensus method is independent and flexible. A sidechain – based on a single encompassing PASA – could apply Proof-of-Stake (POS), Delegated Proof-of-Stake (DPOS), or Directed Acyclic Graph (DAG) as the consensus system of its choice.
· Such a layer-2 smart contract platform can be written in any languages.
· Layer-2 sidechains will also provide very strong anonymity since funds are all pooled and keys are not used to unlock them.
· This layer-2 architecture is ingenious in which the computation is separate from layer-2 consensus, in effect removing any bottleneck.
· Horizontal scaling exists in this paradigm as there is no interdependence between smart contracts and states are not managed by slow sidechains.
· Speed and scalability are fully independent of PascalCoin.
One would be able to run the entire global financial system on PascalCoin’s infinitely scalable smart contract platform and it would still scale infinitely. In fact, this layer-2 architecture would be exponentially faster than Ethereum even after its sharding is implemented.
All this is the main focus of PascalCoin’s upcoming version 5 in 2019. A whitepaper add-on for this major upgrade will be released in early 2019.
Part #8: RandomHash Algorithm
Surely there must be some tradeoffs to PascalCoin’s impressive capabilities, you might be asking yourself. One might bring up the fact that PascalCoin’s layer-1 is based on Proof-of-Work and is thus susceptible to mining centralization. This would be a fallacy as PascalCoin has pioneered the very first true ASIC, GPU, and dual-mining resistant algorithm known as RandomHash that obliterates anything that is not CPU based and gives all the power back to solo miners.
Here is the official description of RandomHash:
“RandomHash is a high-level cryptographic hash algorithm that combines other well-known hash primitives in a highly serial manner. The distinguishing feature is that calculations for a nonce are dependent on partial calculations of other nonces, selected at random. This allows a serial hasher (CPU) to re-use these partial calculations in subsequent mining saving 50% or more of the work-load. Parallel hashers (GPU) cannot benefit from this optimization since the optimal nonce-set cannot be pre-calculated as it is determined on-the-fly. As a result, parallel hashers (GPU) are required to perform the full workload for every nonce. Also, the algorithm results in 10x memory bloat for a parallel implementation. In addition to its serial nature, it is branch-heavy and recursive making in optimal for CPU-only mining.”
One might be understandably skeptical of any Proof-of-Work algorithm that solves ASIC and GPU centralization once for all because there have been countless proposals being thrown around for various algorithms since the dawn of Bitcoin. Is RandomHash truly the ASIC & GPU killer that it claims to be?
Herman Schoenfeld, the inventor behind RandomHash, described his algorithm in the following:
“RandomHash offers endless ASIC-design breaking surface due to its use of recursion, hash algo selection, memory hardness and random number generation.
For example, changing how round hash selection is made and/or random number generator algo and/or checksum algo and/or their sequencing will totally break an ASIC design. Conceptually if you can significantly change the structure of the output assembly whilst keeping the high-level algorithm as invariant as possible, the ASIC design will necessarily require proportional restructuring. This results from the fact that ASIC designs mirror the ASM of the algorithm rather than the algorithm itself.”
Polyminer1 (pseudonym), one of the members of the PascalCoin core team who developed RHMiner (official software for mining RandomHash), claimed as follows:
“The design of RandomHash is, to my experience, a genuine innovation. I’ve been 30 years in the field. I’ve rarely been surprised by anything. RandomHash was one of my rare surprises. It’s elegant, simple, and achieves resistance in all fronts.”
PascalCoin may have been the first party to achieve the race of what could possibly be described as the “God algorithm” for Proof-of-Work cryptocurrencies. Look no further than one of Monero’s core developers since 2015, Howard Chu. In September 2018, Howard declared that he has found a solution, called RandomJS, to permanently keep ASICs off the network without repetitive algorithm changes. This solution actually closely mirrors RandomHash’s algorithm. Discussing about his algorithm, Howard asserted that “RandomJS is coming at the problem from a direction that nobody else is.”
Link to Howard Chu’s article on RandomJS:
https://www.coindesk.com/one-musicians-creative-solution-to-drive-asics-off-monero
Yet when Herman was asked about Howard’s approach, he responded:
“Yes, looks like it may work although using Javascript was a bit much. They should’ve just used an assembly subset and generated random ASM programs. In a way, RandomHash does this with its repeated use of random mem-transforms during expansion phase.”
In the end, PascalCoin may have successfully implemented the most revolutionary Proof-of-Work algorithm, one that eclipses Howard’s burgeoning vision, to date that almost nobody knows about. To learn more about RandomHash, refer to the following resources:
RandomHash whitepaper:
https://www.pascalcoin.org/storage/whitepapers/RandomHash_Whitepaper.pdf
Technical proposal for RandomHash:
https://github.com/PascalCoin/PascalCoin/blob/mastePIP/PIP-0009.md
Someone might claim that PascalCoin still suffers from mining centralization after RandomHash, and this is somewhat misleading as will be explained in part #10.
Part #9: Fair Distribution and Governance
Not only does PascalCoin rest on superior technology, but it also has its roots in the correct philosophy of decentralized distribution and governance. There was no ICO or pre-mine, and the developer fund exists as a percentage of mining rewards as voted by the community. This developer fund is 100% governed by a decentralized autonomous organization – currently facilitated by the PascalCoin Foundation – that will eventually be transformed into an autonomous smart contract platform. Not only is the developer fund voted upon by the community, but PascalCoin’s development roadmap is also voted upon the community via the Protocol Improvement Proposals (PIPs).
This decentralized governance also serves an important benefit as a powerful deterrent to unseemly fork wars that befall many cryptocurrencies.
Part #10: Common Misconceptions of PascalCoin
“The branding is terrible”
PascalCoin is currently working very hard on its image and is preparing for several branding and marketing initiatives in the short term. For example, two of the core developers of the PascalCoin recently interviewed with the Fox Business Network. A YouTube replay of this interview will be heavily promoted.
Some people object to the name PascalCoin. First, it’s worth noting that PascalCoin is the name of the project while Pascal is the name of the underlying currency. Secondly, Google and YouTube received excessive criticisms back then in the beginning with their name choices. Look at where those companies are nowadays – surely a somewhat similar situation faces PascalCoin until the name’s familiarity percolates into the public.
“The wallet GUI is terrible”
As the team is run by a small yet extremely dedicated developers, multiple priorities can be challenging to juggle. The lack of funding through an ICO or a pre-mine also makes it challenging to accelerate development. The top priority of the core developers is to continue developing full-time on the groundbreaking technology that PascalCoin offers. In the meantime, an updated and user-friendly wallet GUI has been worked upon for some time and will be released in due time. Rome wasn’t built in one day.
“One would need to purchase a PASA in the first place”
This is a complicated topic since PASAs need to be commoditized by the SafeBox’s design, meaning that PASAs cannot be obtained at no charge to prevent systematic abuse. This raises two seemingly valid concerns:
· As a chicken and egg problem, how would one purchase a PASA using Pascal in the first place if one cannot obtain Pascal without a PASA?
· How would the price of PASAs stay low and affordable in the face of significant demand?
With regards to the chicken and egg problem, there are many ways – some finished and some unfinished – to obtain your first PASA as explained on the “Get Started” page on the PascalCoin website:
https://www.pascalcoin.org/get_started
More importantly, however, is the fact that there are few methods that can get your first PASA for free. The team will also release another method soon in which you could obtain your first PASA for free via a single SMS message. This would probably become by far the simplest and the easiest way to obtain your first PASA for free. There will be more new ways to easily obtain your first PASA for free down the road.
What about ensuring the PASA market at large remains inexpensive and affordable following your first (and probably free) PASA acquisition? This would be achieved in two ways:
· Decentralized governance of the PASA economics per the explanation in the FAQ section on the bottom of the PascalCoin website (https://www.pascalcoin.org/)
· Unlimited and free pseudo-PASAs based on layer-2 in the next version release.
“PascalCoin is still centralized after the release of RandomHash”
Did the implementation of RandomHash from version 4 live up to its promise?
The official goals of RandomHash were as follow:
(1) Implement a GPU & ASIC resistant hash algorithm
(2) Eliminate dual mining
The two goals above were achieved by every possible measure.
Yet a mining pool, Nanopool, was able to regain its hash majority after a significant but a temporary dip.
The official conclusion is that, from a probabilistic viewpoint, solo miners are more profitable than pool miners. However, pool mining is enticing for solo miners who 1) have limited hardware as it ensures a steady income instead of highly profitable but probabilistic income via solo mining, and 2) who prefer convenient software and/or GUI.
What is the next step, then? While the barrier of entry for solo miners has successfully been put down, additional work needs to be done. The PascalCoin team and the community are earnestly investigating additional steps to improve mining decentralization with respect to pool mining specifically to add on top of RandomHash’s successful elimination of GPU, ASIC, and dual-mining dominance.
It is likely that the PascalCoin community will promote the following two initiatives in the near future:
(1) Establish a community-driven, nonprofit mining pool with attractive incentives.
(2) Optimize RHMiner, PascalCoin’s official solo mining software, for performance upgrades.
A single pool dominance is likely short lived once more options emerge for individual CPU miners who want to avoid solo mining for whatever reason(s).
Let us use Bitcoin as an example. Bitcoin mining is dominated by ASICs and mining pools but no single pool is – at the time of this writing – even close on obtaining the hash majority. With CPU solo mining being a feasible option in conjunction with ASIC and GPU mining eradication with RandomHash, the future hash rate distribution of PascalCoin would be far more promising than Bitcoin’s hash rate distribution.
PascalCoin is the Unicorn Cryptocurrency
If you’ve read this far, let’s cut straight to the point: PascalCoin IS the unicorn cryptocurrency.
It is worth noting that PascalCoin is still a young cryptocurrency as it was launched at the end of 2016. This means that many features are still work in progress such as zn-SNARKs, smart contracts, and pool decentralization to name few. However, it appears that all of the unicorn criteria are within PascalCoin’s reach once PascalCoin’s technical roadmap is mostly completed.
Based on this expository on PascalCoin’s technology, there is every reason to believe that PascalCoin is the unicorn cryptocurrency. PascalCoin also solves two fundamental blockchain problems beyond the unicorn criteria that were previously considered unsolvable: blockchain size and simple address system. The SafeBox pushes PascalCoin to the forefront of cryptocurrency zeitgeist since it is a superior solution compared to UTXO, Directed Acyclic Graph (DAG), Block Lattice, Tangle, and any other blockchain innovations.


THE UNICORN

Author: Tyler Swob
submitted by Kosass to CryptoCurrency [link] [comments]

Online CryptoCurrency Calculator with multi-Cryptocurrencies Simple Bitcoin Converter Why does it matter if the hashrate goes down? BTC Hash Rate Fell by 32%  DigiByte Founder Leaves  Visa’s New Patent  Atari & LTC Bitcoin mining profit calculator How to Use Bitcoin Calculator

Bitcoin mining calculator Summary. Enter the hash rate of your Bitcoin mining hardware (mandatory). Enter additional optional information, such as pool fees, electricity costs, etc. The more information you enter, the more accurate the result will be. 21 Bitcoin Computer. The 21 Bitcoin Computer isn’t the typical USB Bitcoin miner. It does, however, plugin to your computer via USB. In terms of $ / hash rate, it’s not a very good choice. But since it’s still technically a USB miner we have included it in this list. If you’re not impressed, we don’t blame you! USB Bitcoin mining was only profitable when Bitcoin was in its early ... Accurate Bitcoin mining calculator trusted by millions of cryptocurrency miners since May 2013 - developed by an OG Bitcoin miner looking to maximize on mining profits and calculate ROI for new ASIC miners. Updated in 2020, the newest version of the Bitcoin mining calculator makes it simple and easy to quickly calculate mining profitability for your Bitcoin mining hardware. Check your GPU hash rates below. Although an ASIC can be built to provide optimal hashrates on an algorithm, the Graphics Processing Unit (GPU) is much more powerful than the CPU, and more flexible than an ASIC in their application. Profitability Calculator. Check or Compare the potential earnings of your hardware. Calculator Comparison Auto Detection. For CPU & GPU only. autodetect my hardware For Windows 64bit users only. or. Manual Selection. CPU, GPU & ASIC. ENTER HARDWARE MANUALLY. BEST PERFORMING HARDWARE Top 5 hardware Currently on NiceHash. ASIC. EARNINGS/DAY. BITMAIN AntMiner S19 Pro. 0.00083300 BTC $10.81 ...

[index] [31865] [44180] [39681] [15153] [34777] [14778] [10831] [5559] [7513] [1594]

Online CryptoCurrency Calculator with multi-Cryptocurrencies Simple Bitcoin Converter

Bitcoin is a digital currency, which is supported by a P2P network of computers across the internet that act as servers to process the financial transactions of this currency. Some believe Bitcoin ... If so, someone may be using your computer's processing power to mine bitcoins In order to show you the most relevant results, we have omitted some entries very similar to the 86 already displayed. Bitcoin’s hash rate has decreased by 32% in the past few days as the revenue generated by miners is also substantially less following the halving.The founder of DigiByte steps aside Visa filed ... Crypto exchange rate calculator helps you convert prices online between two currencies in real-time. Online CryptoCurrency Calculator with multi-Cryptocurrencies. Cryptocurrency converter, calculator. The main function of a Bitcoin calculator is to compute how much processing power it will take to generate Bitcoins with a given hardware setup. Because of the deterministic nature of all the ...

#